
 
 

  
  

 

 
 
    

   

 

  

5.73 Lecture #15 15 - 1 

Perturbation Theory II 
(See CTDL 1095-1104, 1110-1119) 

Last time: 
H(0)ψ n 

(0)ψ n 
H(0) is diagonal (0) (0) = En 

(0) (0) {ψ n },{En }  are 

basis functions and 
zero-order energies 

(1) (1) expectation value for ψ (0) 
nEn = Hnn 

of the perturbation operator 

sum excludes k = n 
En 
(2) = Σ′ (0) 

H 

− 
nk
(1) 

E 

2 

k 
matrix element vs. energy denominator(0) k En 

1st index 

(0) + En 
(1) + En 

(2) En = En 

(1) 
(1) (0) ψ n = Σ′ (0) 

H 

− 
nk

Ek
(0) ψ kk En 

sum excludes k = n 

mixing coefficient, order-
sorting parameter, 
convergence criterion 

Today: 

1. cubic anharmonic perturbation 
x3 vs. a,a† matrix elements 
ax3 contributions to ωx and Y00 

2. nonlecture Morse oscillator ↔ pert. theory for ax3 

3. transition probabilities — orders and convergence of 
perturbation theory 
Mechanical and electronic anharmonicities. 
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5.73 Lecture #15 15 - 2 
p2 1Example 1.  H = + kx2 

2m 2 

H(0) 

+ax3 

H(1) 

(a < 0) 

unphysical behavior 

]1/ 2[( i +1)(i + 2)( i + 3) 
Need matrix elements of x3 

one (longer) way xi 
3 
ℓ = ∑ 

j ,k 
xij x jk xkℓ matrix multiplication 

4 different selection rules: ℓ – i = 3, 1, –1, –3 

ℓ – i = 3 i ⟶ i + 1, i + 1 ⟶ i + 2, i + 2 ⟶ i + 3 one path for ℓ – i = 3 
[(i+1)(i+2)(i+3)]1/2 

ℓ – i = 1 i ⟶ i + 1, i + 1 ⟶ i + 2, i + 2 ⟶ i + 1 three paths for ℓ – i = 1 
i ⟶ i – 1, i – 1 ⟶ i, i ⟶ i + 1 
i ⟶ i + 1, i + 1 ⟶ i, i ⟶ i + 1 

There are three 3-step paths from i to i + 1. Add them. 
1/2 1/2 1/2 

⎣(i +1)(i + 2)(i + 2)⎦ + ⎣ i ( )(i +1 ⎦ + ⎣(i +1)(i +1)(i +1)⎦⎡ ⎤ ⎡( ) i )⎤ ⎡ ⎤ 

algebraically complicated (but only apparently!) 

an other (much shorter) alternative method: using a, a†, and a†a 
[operator algebra rather than ordinary algebra] 

3/2 3/2 

x3 ⎛ ! ⎞ x3 ⎛ ! ⎞ 2−1/2 
3 

= ⎝⎜ ⎠⎟ ~ 
= ⎝⎜ ⎠⎟

⎡⎣ (a + a† )⎤⎦mω mω 
3/2 

⎛ ! ⎞ = ⎝⎜ 2mω ⎠⎟ (a + a† )3 

(a + a† )3 
= a3 + ⎡a†aa + aa†a + aaa† ⎤⎦ + ⎡aa†a† + a†aa† + a†a†a⎦⎤ + a†

3 

⎣ ⎣ 

four additive terms, four different selection rules. 
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5.73 Lecture #15 15 - 3 
Use simple a,a† algebra to work out all matrix elements and selection 
rules by inspection. 

)1/2 = n1/2 recall: a† n = (n +1 n +1 , a n n −1 , a†a n = n n 

prescription for permuting⎡⎣a,a
† ⎤⎦ = 1 ∴ aa† = 1+ a†a a through a† 

Δn = –3 an 
3 
−3,n = ⎡⎣(n − 2)(n −1)( )n ⎤⎦

1/2 

Δn = +3 †3 = (n + 3)(n + 2)(n +1) 1/2 an+3,n ⎡⎣ ⎤⎦ 
Δn = −1 ⎡⎣a

†aa + aa†a + aaa† ⎤⎦n−1,n goal is to rearrange each product so that it 
has the number operator at the far right 

a†aa = [a†,a]a + aa†aa†aa = aa†a − a 
–1 

aaa† = aa†a + a 
aa†a = aa†a 

3aa†a + 0 3 operators combined into only one! 

= 3n3/2 Δn = –1 [ ]n−1,n 
= 3(aa†a) = n −1 n3a(a†a)n−1,n 

Δn = +1 ⎡aa†a† + a†aa† + a†a†a⎤ simplify as below⎣ ⎦ 

aa†a† = a†aa† + a† = a†a†a + 2a† 

a†aa† = a†a†a + a† 

a†a†a = a†a†a 
3a†a†a + 3a† 

)1/2 )1/2 )3/2 † † †3 n +1 (a a a + a ) n = 3(n(n +1 + (n +1 ) = 3⎡⎣(n +1)(n +1)
1/2 ⎤⎦ = 3(n +1 

All done — not necessary to massage the algebra as would have been 
necessary for x3 by direct x multiplication! 
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5.73 Lecture #15 15 - 4 
Now do the perturbation theory: 

2(1) 

En = En 
(0) + En 

(1) + En 
(2) = !ω(n +1/ 2) + 0 + Σ′ (0) 

H 

− 
nk

Ek
(0) k En 

xnn 
3 = 0 

2
Hnk 

(1) E (0) − Ek 
(0) 

n 

2 ⎛ ! ⎞ 
3 

k = n − 3 a (n − 2)(n −1)( )n +3!ω
⎝⎜ 2mω ⎠⎟ 

⎛ ! ⎞ 
3 

k = n − 1 a2 9n3 +1!ω
⎝⎜ 2mω ⎠⎟ 

⎛ ! ⎞ 
3 

k = n + 1 a2 

⎝⎜ 2mω ⎠⎟ 
9(n +1)3 

−1!ω 

2 ⎛ ! ⎞ 
3 

k = n + 3 a (n + 3)(n + 2)(n + 1) −3!ω
⎝⎜ 2mω ⎠⎟ 

3 
2a ⎛⎜
⎝ 

⎞
⎟
⎠ 

! 
⎡ 
⎢ 
⎢⎣ 

3 ) 3( )( n −1)( )n ( n + 3)( n + 2)( n + 1) 9n 9( n + 1
− + − 

⎤ 
⎥ 
⎥⎦ 

2mω n − 2(2)En = 3 3 1 1!ω 

all of the 2 nearly-cancelling pairs
constants 

Simplest path is to combine the pairs of ∆n = 3 and –3, ∆n = 1 and –1 terms 

En 
(2) = 

a2!2 

⎡−30(n +1/ 2)2 − 3.5⎤ algebra 
8m3ω 4 ⎣ ⎦ 

(2) a2!2 ⎡15 7 ⎤En = − (n +1/ 2)2 + (m3ω 4 = mk2 )m3ω 4 ⎣⎢ 4 16 ⎦⎥ 

all levels are shifted down, regardless of sign of a. Can’t measure 
the sign of the cubic anharmonicity constant, a, from vibrational 
structure alone! 

15 ⎛ a2! ⎞ 7 ⎛ a2! ⎞En = !ω(n +1/ 2) − ! 
⎠⎟ 
(v +1/ 2)2 − !

4 ⎝⎜ m3ω4 16 ⎝⎜ m3ω4 ⎠⎟ 

!ωexe !Y00 

En = ! ⎡⎣Y00 + ωe (v +1/ 2) −ωexe (v +1/ 2)2 + ωeye (v +1/ 2)3 …⎤⎦ 

ax3 makes contributions exclusively to Y00 and ωexe. 
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5.73 Lecture #15 15 - 5 

NON-LECTURE 

Relationship between Morse Oscillator and Perturbation Theory Treatment of Cubic 
Plus Quartic Anharmonic Oscillator 

Morse oscillator 

(x) = D [1− e−αx ]2 
(D  is the dissociation energy)eVMorse e 

Cubic Plus Quartic Oscillator 

1(x) = kx2 + ax3 + bx4V3,4 2 

The exact energy levels of VMorse (obtained via WKB or DVR) have the simple form 

En = ! ⎡⎣(n +1/ 2)ω − (n +1/ 2)2 ωx⎤⎦. 

First we determine the relationship between De,� and �, �x for the Morse oscillator. 

At the dissociation limit, n ≡ nD 

dE = 0
dn 
dE = 0 = !ω − !ωx(2nD +1)
dn 

ω 1 
nD = −

2ωx 2 

E (nD ) = D e 

⎛ ω ⎞ ⎛ ω ⎞ 
2 

E(nD ) = !ω ⎠⎟ − !ωx⎝⎜ ⎝⎜ ⎠⎟2ωx 2ωx 
ω2 

= ! 
4ωx 

ω2 

D = ! e 4ωx 

This is neat because we have related two easily measured molecular 
constants, � and �x, to one less easily measured molecular constant, De. 
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5.73 Lecture #15 15 - 6 

Now, in preparation for the perturbation theoretic comparison of VMorse to V3,4, 
we compute the derivatives of VMorse at x = 0. 

V (0) = 0 
dV !ω2 

−αx − 2αe−2αx= V ′(x) = [2αe ]
dx 4ωx 

As expected, V(x) is a minimum at x = 0, 

V ′(0) = 0 
d 2V !ω2 

−αx + 4α2 −2αx= V ′′(x) = [−2α2e e ]
dx2 4ωx 

V ′′(0) = 
!ω2

2α2 = k = mω2 (ω2 = k / m)
4ωx 

⎡ 2mωx ⎤
1/2 

α = 
⎣⎢ ! ⎦⎥ 

Thus we know both De and � for VMorse in terms of � and �x for an anharmonic 
oscillator. 

!ω2 
−αx − 8α3 −2αxV ′′′(x) = [2α3e e ]

4ωx 

3 !ω2α3 3 !ω2 ⎡ 2mωx ⎤
3/2 

V ′′′(0) = − = −
2 ωx 2 ωx ⎣⎢ ! ⎦⎥ 

−αx +16α4V ′′′′(x) = 
4 
! 
ω
ω 

x 

2 

[−2α4e e−2αx ] 

!ω2 7 !ω2 ⎡ 2mωx ⎤
2 

V ′′′′(0) = [14α4 ] = 
4ωx 2 ωx ⎣⎢ ! ⎦⎥ 

(ωx)ω2 

= 14 
! 
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5.73 Lecture #15 15 - 7 

Now we look at the same set of derivatives for V3,4 

1
(x) = kx2 + ax3 + bx4V3,4 2 
(0) = kV3,4 ′′ 

V3,4 ′′′(0) = 6a 

V3,4 ′′′′(0) = 24b 

(0) = V3,4 ′′′(0) VMorse ′′′ 

⎛ 2ωx ⎞
1/2 

−3 = 6a⎝⎜ ! ⎠⎟ 

2!2aωx = 3ω4m 
(0) = V3,4 ′′′′(0) VMorse ′′′′ 

(ωx)ω2 

14 = 24b 
! 

Applying perturbation theory to V3,4(x), we saw on page 15-4 that 

2!15 aωx = 3ω44 m 

but the algebraic approach to VMorse led to 

2!aωx = 2 3ω4m 
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5.73 Lecture #15 15 - 8 

This difference is due to neglect of the first order contribution from the x4 

term in the power series expansion of VMorse(x). 

⎡ !ω2α4 ⎤ 4(1) 4En = V ′′′′(0)x 4!= 7 / 2 24
⎣⎢ ωx ⎦⎥

x 

⎛ ! ⎞ 
2 

4n x n = ⎡⎣4(n +1/ 2)2 + 2⎤⎦⎝⎜ ⎠⎟2mω 

(1) 7 )2 7
En = ωx(n +1/ 2 + ωx

12 24 

It turns out that input of the algebraic relationships between k, a, b for the 
V3,4 potential and De, � for VMorse into perturbation theory gives correct results 
if the ax3 term is treated through second-order of perturbation theory but the 
bx4 term is treated only through first order of perturbation theory. 

END OF NON-LECTURE 
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5.73 Lecture #15 15 - 9 

One reason that the result from second-order perturbation theory applied 
directly to V(x) = kx2/2 + ax3 and the term-by-term comparison of the power 
series expansion of the Morse oscillator are not identical is that contributions to 
the (n + 1/2)2 term have been neglected from higher derivatives of the Morse 
potential in the energy level expression. In particular 

⎡ ⎤
En 
(1) = V ′′′′( )0 x4 4! = 7 / 2 

!ω2α4 

⎥ x
4 24⎢ ωx⎣ ⎦ 

2
⎛ ! ⎞x4n n = ⎡4(n +1/ 2)2 + 2⎤ ⎝⎜ 2mω⎠⎟ ⎣ ⎦ 

contributes in first order of perturbation theory to the (n + 1/2)2 term in En. 

7 

24
7 ωxEn 

(1) = 
12 

ωx(n +1/ 2)2 + 

Example 2  Use perturbation theory to compute some property other than Energy. 

(0) + ψ(1) To do this we need ψ = ψ in order to calculate matrix elements of the operator in question.n n n 

For example, transition probability, x: for electric dipole transitions, the transition
2probability is Pn′←n ∝ xnn′ 

For  H-O n → n ±1 only 
Standard result. Now allow for both

2 ⎛ ! ⎞xnn+1 = ⎝⎜ ⎠⎟ (n +1) “mechanical” and “electronic”2mω anharmonicity. 
for perturbed H-O H(1) = ax3 

(1) 
(0) + 

Hnk (0) ψ = ψ Σ′ n n (0) − Ek 
(0) ψ kk E n 

(1) (1) (1) (1) H H H H(0) + nn+3 (0) + nn+1 nn−1 (0) + nn−3 (0) ψ = ψ ψ ψ (0) + + ψ ψ n n n+3 n+1 n−1 n−3−3!ω −!ω !ω 3!ω 
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5.73 Lecture #15 15 - 10 
(0) + ψ (1) initial ψ effect anharmonic (also contaminated via ax3) 

state 
n n 

of x final stateeffect of 
3 (0) n+4 (0) ax  on ψ nψ n n+7 , n+5, n+4, n+3, n+1 

n+3 
n+2 n+5, n+3, n+2, n+1, n–3 
n+1 n+1 n+4, n+2, n+1, n, n–2 
nn n n+3, n+1, n, n–1, n–3 
n–1 n+2, n, n–1, n–2, n–4 n–1 
n–2 n+1, n–1, n–2, n–3, n–5 

n–3 
n–4 n-1, n-3, n-4, n-5, n-7 

Many paths from initial to final state, which interfere constructively and 
2xnn ′destructively in 

n′ = n + 7,n + 5,n + 4,n + 3,n + 2,n +1,n,n –1,n − 2,n − 3,n − 4,n − 5,n − 7 

only paths for H-O! 

The transition strengths may be divided into 3 classes 

1. direct: n → n ± 1 
2. one anharmonic step  n → n + 4, n + 2, n, n – 2, n – 4 
3. 2 anharmonic steps  n → n + 7, n + 5, n + 3, n + 1, n – 1, n – 3, n – 5, n – 7 

Work thru the ∆n = –7 path 

⎤
⎥
⎥ 

1/2 
⎡3/2+3/2+1/2 a2⎡ ⎤h⎛

⎝⎜ 

3xn,n+3 xn+3,n+4 

xn 
3 
+4,n+7 

!3a4n72 ∝xnn+7 3427 m7ω 11 

⎞
⎟⎠ 

⎢
⎢

n + 7 (n +1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)(n + 7)!###"###$ !"$ !###"###$n x ⎢
⎢⎣ 

⎥
⎥⎦ 

= 
)22mω (−3hω ⎣ ⎦xn ,n+3 xn+3,n+4 xn+4 ,n+7 

10
modified 8/13/20 1:09 PM 



 

 

 

  

        

     
 

 
      

  
 

 
     

  

   

   

5.73 Lecture #15 15 - 11 
* you show that the single-step anharmonic terms go as  

3/2+1/2 
⎛ ! ⎞ a 1/2 

x ∝ ⎡⎣(n +1)(n + 2)(n + 3)(n + 4)⎤⎦nn+4 ⎝⎜ 2mω ⎠⎟ (−3!ω) 
!2 2 4

2 a n 
x ∝ nn+4 " 3224 m4ω6 

* Direct term 

x 
2 
∝ 
!1 (n +1)nn+1 1ω12m 

⎛ !n3a2 ⎞ 
Each higher order term gets smaller by a factor 3223 3ω5 ⎠⎟ 

,
⎝⎜ m

which is a very small dimensionless factor. 
RAPID CONVERGENCE OF PERTURBATION THEORY! 

What about Quartic perturbing term bx4? 

Note that E (1) = n bx4 n ≠ 0 

and is directly sensitive to the sign of b! 

It is very important to know whether perturbation theory can give us the 
sign of a perturbation parameter. 

• an even power of x in axk gives contribution to En 
(1) = Hnn 

(1) , which depends 
on the sign of a. 

• an odd power of x in axk gives a zero contribution to En 
(1) and a non-zero 

contribution proportional to a2 to En 
(2) , which does not depend on the sign of 

a. 

• a cross term, as we will see in Bv = Be – α(v + 1/2), can give the sign of the 
coefficient of an odd-k term in H(1). A bit of a surprise! 
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