
    
 

 
 

 
 

 
 

 
 
 

  
 

  
 

 
 

 
    

 
  

  
 

   
   

   
   
   
   
   
   
    

 
      
         
   

 
 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I
Fall,  2018 

Professor Robert W. Field 

Problem Set #4 

 Reading: CTDL, pages 94-144. 

Problems: 

1. RKR and Franck-Condon.  Use Robert LeRoy's programs, RKR1-16 and
LEVEL16! https://leroy.uwaterloo.ca/programs.html

For CO, consider the A1∏ and X1∑+ electronic states.  The molecular constants 

(in cm−1 units) are:

X1∑+ A1∏ 

Y00 0.190 –0.554
Y10 2169.814 1518.24 
Y20 –13.288 –19.40
Y30 0.01051 0.766
Y01 1.931281 1.6115 
Y11 –0.017504 –0.02325
Y21 5.487 × 10−7 0.00159

µ = 6.85620871 amu D0
0
(X) = 89462cm−1 

Te = 65075.77cm−1 D0
0
(A) = (89462–64748)cm−1 =24714 cm–1 

Re(X) = 0.1128323nm Re(A) = 0.12353nm 

http://leroy.uwaterloo.ca/programs.html
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A. Determine the RKR V(x) potential energy curves for the CO X1∑+ and A1∏ 
electronic states.  Use the following G(v) and B(v) functions 

G(v) = Y00 + Y10(v + 1/2) + Y20(v + 1/2)2 + Y30(v + 1/2)3 

B(v) = Y01 + Y11(v + 1/2) + Y21(v + 1/2)2 

as input to RKR.  Ask RKR to calculate turning points for –1/2 ≤ v < 15 in 
steps of 0.25. 

B. Calculate overlap integrals, 〈 v′|v′′〉 , and Franck Condon factors for all 
transitions between v″ = 0 of the X-state to 0 ≤ v′ ≤ 15 of the A-state.  The 
Franck-Condon factor is 

2 
= v′ | v′′ qv′v′′ 

where q is the F-C factor, v′ and v″ are respectively the vibrational 
quantum numbers for the upper (A) and lower (X) electronic states. 

C. Sketch what the A–X absorption spectrum would look like.  Consider that 
initially only v″ = 0 is populated and represent each vibrational band as a 
vertical line, at the frequency of the v′← v″ = 0 transition, with height 
equal to the F-C factor.  [This cartoon of the spectrum ignores the 
rotational structure of each vibrational band.] 

D. Now create a wavepacket in the A1∏ state by using a 1fs laser pulse, 
centered at ~72,000 cm–1, to in effect transfer the v″ = 0 wavefunction onto 
the upper potential.  A 1fs pulse has a Fourier Transform width of 
~ 15,000 cm–1. 

Ψ(x,0) = ∑ v′′ = 0 ψ v′ (x) ⎡⎣x = R − Re ⎤⎦ v′ 
v′=0,15 

2 
2 (i) Plot |Ψ(x,0)| vs. x.  Compare it to ψ v′′=0 

(x) . 

(ii) Calculate 〈 E〉 = E0, 〈 x〉 = x0, and 〈 p〉 = p0 at t = 0 for this wavepacket.  
You are going to have to ask LeRoy's programs to calculate a lot 
(136 each for E, x, and p) of integrals of the form 〈 v |H |vj〉 , 〈 vι|x |vj〉 , i 

and 〈 vi|p |vj〉 . If this turns out to be too difficult, use harmonic 
oscillator selection rules (∆v = ±1 for x and p, ∆v = 0 for H) and 
scaling rules (〈 v+1|x |v〉 = (v+1)1/2〈 1|x |0〉 and similarly for p). 

(iii) Why is p0 ≈ 0?  Why is 〈 x〉 0 ≈ Re(X) – Re(A) = –0.0107nm?  Why is 
E0 ≈ 65,076 + VA(R = Re(X))? 
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(iv) The classical Franck-Condon principle requires that, because an 
electronic transition is “instantaneous”, the nuclear coordinates and 
momenta do not change, ∆R = 0 and ∆P = 0.  The ∆R = 0 rule 
requires transitions to be vertical and the ∆P = 0 rule is nearly 
equivalent to a requirement that strong transitions be from turning 
point to turning point (where p(x±) = 0).  This means that you can 
determine E0 and 〈 x〉 0 from a simple potential curve diagram rather 
than the lengthy calculation you have done in part D(ii).  Compare 
the values of E0 and 〈 x〉 0 obtained from the potential curve diagram
to those you obtained in a rigorous calculation. 

E. Now set up 

− iEv′t /! Ψ(x,t) = ∑ v′′ = 0 ψ v′ (x)e v′ 
v′=0,15 

for the wavepacket in part D.  You have already calculated 〈 v′|v″=0〉 in 
part B.  Be sure to retain the signs of the overlap integrals. 

(i) Compute and plot 〈 x〉 t, 〈 p〉 t. 

(ii) What does your plot of 〈 x〉 t tell you about the width of the upper 
potential, VA(x), at 〈 E〉 0?  [NOTE that 〈 E〉 t = 〈 E〉 0 = E0!]  What does it 
tell you about the shape of VA(x)?  What does the maximum value 
of 〈 p〉 t tell you about the depth of VA(x) (i.e. the energy of the 
minimum of VA(x))? 

(iii) 〈 x〉 t and 〈 p〉 t are not observable directly in a simple time-domain 
experiment.  However, the average oscillation period of 〈 x〉 t of the 
wavepacket is easily measurable.  Compare the oscillation period, 
T, defined as 〈 x〉 0 = 〈 x〉 T, to ρ(E0)/c, where ρ(E0) is the density of 
states at E0 in units of 1/cm–1 and c is the speed of light in units of 

cm/sec.  You can obtain ρ(E0) from dG(v) and v(E0) is 
dv v=v(E0 ) 

obtained from 

Evib = E0 – Te = G(v(E0)). 



   
 

  
 

   

 
 

  
 

  

 

 

  
 

  

   
   

 
   
 

  
        

 
   
 

    
 
     
 

 
 

     
 

 

Chemistry 5.73 Page 4 
Problem Set #4 

F. Plot the survival probability of your wavepacket 

2 
P(t) = Ψ(x,t) Ψ(x,0) . 

You should see a series of partial rephasings, each one smaller than the 
previous one.  Why?  Will the system ever rephase nearly perfectly to 
P(t) ≈ 1.0?  If so, can you predict when this will occur? 

G. There is a lot of useful information in P(t).  The initial rate of decay of P(t) 

is related to dV (x) because the force on the wavepacket is –1 times 
dx x=x0 

the gradient of V(x).  In order to relate the initial decay rate of P(t), via 
classical mechanics, to the gradient of the potential at x0, we need to define 
a semi-classical length of the wavepacket so that we can imagine the 
wavepacket moving away from perfect overlap with itself at t = 0 and use 
this to define a time-dependent overlap probability.  
Use the square root of the variance of the X1∑+ v″ = 0 wavefunction.  You 
should treat this state as if it were the perfect Gaussian wavefunction that 
is the v″ = 0 eigenstate of a harmonic oscillator with ωe = 2169.819 cm–1 

and reduced mass µ = 6.85620871 a.m.u.  When ωe is in cm–1 units 

(k/µ)1/2 = 2πcωe. 

Assume that P(t) has decayed to 1/2P(0) when the Gaussian wavepacket 
has moved a distance equal to 1/2FWHM of the squared Gaussian.  If ∆x2 

is the variance of ψv″ (x), then the FWHM of ψ v″ =0 (x) 2 is = 0 

FWHM = 2∆x(ln2)1/2 

and the distance that the center of the wavepacket must move so that 
P(t1/2) = 0.5P(0) is 0.833∆x.  The v″ = 0 wavefunction 

−αx2 2 ψ0 (x) ∝ e 

where 

α = (kµ / !2 )1/2 . 

You can approximate V(x) as linear at x0.  
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This provides a universal relationship between dV and the decay rate of 
dx x0 

P(t).  Using this relationship, the slope of an excited potential curve may 

be experimentally determined at Re(x) from the observed dP . 
dt t=0 

H. The ratio of P(t) values at the second and first partial recurrences of the 
wavepacket, P(T2)/P(T1), provides information about the ratio of the 
anharmonicity of the potential to the average vibrational frequency at E0.  
For a G(v) function truncated to 

G(v) = Y10(v + 1/2) + Y20(v + 1/2)2 

ρ(v) = Y10 + 2Y20(v + 1/2). 

Thus, for a wavepacket with average excitation energy E0, P(T2)/P(T1) is 
going to be related to the ratio 

d2G 

dv2 
v=v(E0 ) ≈ 

2Y20 

Y10 
+ 2Y20(v +1/2)

. 
dG 
dv v=v(E0 ) 

Since you determine Y10 + 2Y20[v(E0) + 1/2] from the oscillation period of 
P(t) determined in part E(iii), you can determine the anharmonicity 
constant from P(T2)/P(T1).  From the known values of Y10, Y20, and v(E0) and 
your empirical value for P(T2)/P(T1), obtain a value for the universal 
proportionality factor relating P(T2)/P(T1) to Y10 and Y20. 

I. What would |Ψ(x,0)|2 look like if you had started the system initially in 
v″ = 1 instead of v″ = 0?  Would this two-lobed initial preparation make 
P(t) have a more complicated appearance?  Explain.  Speculate about the 

2 evolution of |Ψ(x,t)| for such a preparation.  [HINT:  think in terms of two 
wavepackets, each with its own values of 〈 x〉 0, 〈 p〉 0, and 〈 E〉 0.]  Can you 
guess what these initial values are and how the center position and 
momentum of these two wavepackets would sample VA(x)? 

2. CTDL, page 203, #1.  This is a beautiful introduction to “density matrices”. 



Note: Athena is MIT's UNIX-based computing environment. OCW does not provide access 
to this environment.
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