e²/r_{ii} and Slater Sum Rule Method

LAST TIME:

- 1. The L^2,S^2 matrix method for setting up $|NLM_LSM_S\rangle$ manyelectron basis states in terms of linear combination of Slater determinants $L^2 \to L_L$
 - * $M_L = 0$, $M_S = 0$ block: $S^2 \rightarrow S_{\perp}S_{\perp}$
 - * diagonalize S² (singlets and triplets)
 - * diagonalize \mathbf{L}^2 in same basis that diagonalizes \mathbf{S}^2 [Recall: to get matrix elements of \mathbf{L}^2 , first evaluate \mathbf{L}^2 $\|\psi_i\|$ and then left multiply by $\|\psi_i\|$]
- 2. coupled representations $|\tilde{n}j\omega \ell s\rangle$ and $|NJLSM_J\rangle$
- 3. Projection operators: automated projection of \mathbf{L}^2 eigenfunctions
 - * remove unwanted L'' part
 - * preserve normalization of wanted L' part
 - * remove overlap factor
 - * easy to write computer program that automates the projection method

TODAY:

- 1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.
- 2. Evaluate $\sum_{i>j} e^2/r_{ij}$ matrix elements (tedious, but good for you) $[1/r_{ij}$ is a $2-e^-$ operator that involves spatial coordinates only, scalar with respect to **J**, **L**, and **S**].
 - st $multipole\ expansion$ of charge distribution due to "other electrons"
 - * matrix element selection rules for e^2/r_{ij} in both Slater determinantal and many- e^- basis sets

1

- * Gaunt Coefficients (c^k) (tabulated) and Slater-Condon (F^k, G^k) Coulomb and Exchange parameters. Because of the sum rule, can evaluate most $\langle ab \left| \frac{1}{r_{ij}} \right| ab \rangle$ and $\langle ab \left| \frac{1}{r_{ij}} \right| ba \rangle$ type matrix elements and never need to evaluate $\langle ab \left| \frac{1}{r_{ij}} \right| cd \rangle$ -type matrix elements except when the configuration includes two same-L,S terms.
- 3. Apply Sum Rule Method
- 4. Hund's 1st and 2nd Rules

1. Slater's Sum Rule Method

It is almost always possible to evaluate e^2/r_{ij} matrix elements without solving for all $|LMLSMs\rangle$ basis states

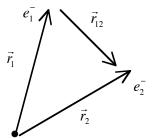
- * trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)
- * $\sum_{i>j} e^2/r_{ij}$ and every scalar operator with respect to \hat{J} (or \hat{L} , \hat{S}) has non-zero matrix elements diagonal in J and M_J (or L and M_L) and independent of M_J (or M_L , M_S)

[W-E Theorem: **J** is the GENERIC ANGULAR MOMENTUM with respect to which e^2/r_{ij} is classified]

Recall from definition of r_{12} , that e^2/r_{ij} is a scalar operator with respect to \hat{J} , \hat{L} , \hat{S} but not with respect to \hat{J} or ℓ .

Interelectronic Repulsion: $\sum_{i>j} e^2/r_{ij}$

- * destroys the single-electron orbital approximation $|n\ell\lambda\rangle$ for electronic structure calculations
- * "correlation energy," "shielding"□



$$e_1^-$$
 at (r_1,θ_1,ϕ_1)

$$e_2^-$$
 at (r_2, θ_2, ϕ_2)

$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$$

Scalar with respect to \mathbf{J} , \mathbf{L} , \mathbf{S} , \mathbf{s}_i but not \mathbf{j}_i , ℓ_i . Do you know why?

$$+ r_{12}^2 = r_1^2 - 2r_1 \cdot r_2 + r_2^2$$

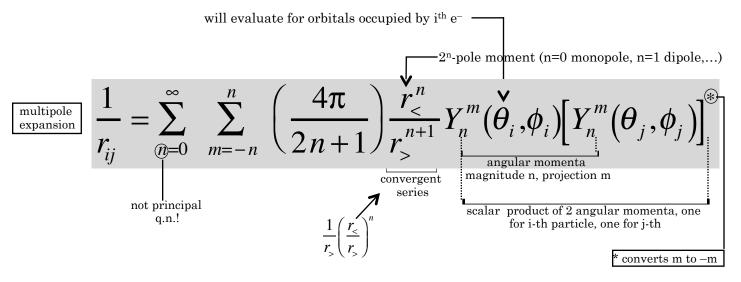
$$r_{12} = \left[r_1^2 + r_2^2 - 2 |r_1| |r_2| \cos(\vec{r}_1, \vec{r}_2) \right]^{1/2}$$

expand r_{12}^{-1} as power series in $\left(\frac{r_{<}}{r_{>}}\right)$ where $r_{<}$ is the smaller of $\left|r_{1}\right|,\left|r_{2}\right|$

(integrals evaluated in 2 regions: $r_1 < r_2, r_2 < r_1$)

the larger r_i is seeing the multipoles of the smaller r_i

see Eyring, Walter, and Kimball, "Quantum Chemistry", pages 369-371 and, for relationship between Legendre polynomials and $Y_{\ell}^{m}(\theta,\phi)$, pages 52-59.



An n-pole charge distribution is an n-th rank tensor with 2n+1 components.

No dependence on electron spin, so $1/r_{ij}$ is scalar with respect to S, s_i , s_j .

$$\left[Y_n^m \left(\theta_i, \phi_i \right) = \left\langle \theta_i, \phi_i \middle| \ell_i = n, m_{\ell_i} = m \right\rangle \right]$$
indices of Y_n^m

The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of $r_{\rm i}$, $\theta_{\rm i}$, $\phi_{\rm i}$, which are the coordinates of the i-th e⁻ with respect to the center of symmetry (nucleus) rather than the other e⁻. It enables use of atomic orbital basis states. Otherwise the $1/r_{\rm ij}$ integrals would be nightmares.

$$Y_n^m(\theta,\phi) = \langle \theta,\phi | n = \ell, m = m_\ell \rangle$$

Selection rules for matrix elements:

(non-zero for steps in n of an even number because of parity)

overall:
$$\Delta L = 0$$
, $\Delta S = 0$, $\Delta M_L = 0$, $\Delta M_S = 0$, and independent of M_L , M_S . Can use any M_L , M_S Slater determinant from the box diagram.

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also Condon and Shortley pages 178-179, Golding, page 41).

 $\underline{\text{general }1/r_{12}\text{ matrix element}}$ (non-zero matrix elements of the $1/r_{12}$ operator follow the Δ s-o = 0, 1, and 2 spin-orbital selection rule for change in spin-orbitals)

$$\left\langle \left\| \underbrace{ab} \right\| \frac{\mathbf{e}_{2}^{-}}{\mathbf{e}_{1}^{-}} \right| \left| \mathbf{c}d \right| \right\rangle = \left\langle ab \left| \frac{1}{r_{12}} \right| \mathbf{c}d \right\rangle - \left\langle ab \left| \frac{1}{r_{12}} \right| d\mathbf{c} \right\rangle$$

$$\left\langle ab \middle| \frac{1}{r_{12}} \middle| cd \right\rangle = \underbrace{\delta \left(m_{s_a}, m_{s_c} \right)} \underbrace{\delta \left(m_{s_b}, m_{s_d} \right)} \underbrace{\delta \left(m_{\ell_a} + m_{\ell_b}, m_{\ell_c} + m_{\ell_d} \right)}_{\text{1/r}_{12} \text{ scalar with respect to } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect to } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect to } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect to } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect to } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{\ell}_1 + \hat{\ell}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_{12} = \hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)}_{\text{1/r}_{12} \text{ scalar with respect } \underbrace{\hat{L}_1 + \hat{L}_2 \text{ (can't change } M_L)$$

 $\underbrace{c^{k}\left(\ell_{a}m_{\ell a},\ell_{c}m_{\ell c}\right)c^{k}\left(\ell_{b}m_{\ell b},\ell_{d}m_{\ell d}\right)}_{e_{2}}\times R^{k}\underbrace{\left(n_{a}\ell_{a}n_{b}\ell_{b}n_{c}\ell_{c}n_{d}\ell_{d}\right)}_{1:16}$ tensor rank for radial factor

ANGULAR FACTOR OF

INTEGRAL

product of AOs

occupied by e^{-#1} must be same

as for e #2 for scalar product of two n-th rank tensors

A "reduced matrix element" because all m quantum numbers are gone.

$$\underline{c^{k}\left(\ell m_{\ell}, \ell' m_{\ell'}\right)} \equiv \left[\frac{2\ell'+1}{2\ell+1}\right]^{1/2} \underline{A_{000}^{k\ell\ell'} A_{m_{\ell}-m_{\ell}, m_{\ell}-m_{\ell}}^{k\ell'\ell}}$$

Clebsch-Gordan coefficients that result from integral over the product of three spherical harmonics — one from operator, two from orbitals

triangle rule: $|\ell - \ell'| \le k \le \ell + \ell'$ (from properties of $A_{000}^{k\ell\ell'}$) (including parity) $\ell + \ell' + k = \text{even}$

restrictions on k and m:

$$\begin{array}{c|c}
e_1^- & \text{integral} & m_{\ell_1} + m = m'_{\ell} \\
\left\langle n_1 \ell_1 m_{\ell_1} | Y_k^m | n'_1 \ell'_1 m'_{\ell_1} \right\rangle \\
& \text{triangle rule}
\end{array}$$

For <u>intra</u>-configuration matrix elements, $R^k(abcd)$ has an especially simple form (because the same one or two orbitals appear in both the bra and in the ket).

$$R^k(ab,ab) \equiv F^k(a,b)$$
 "Slater – Condon" parameters (these are reduced matrix elements dependent only on ℓ_a , ℓ_b , ℓ_c , ℓ_d and not on any of the m_ℓ quantum numbers.) All L - S states that belong to the same configuration are expressed in terms of the same set of F^k , G^k parameters.

$$\left\langle \left| \left| ab \right| \right| \frac{e^2}{r_{12}} \right| \left| ab \right| \right\rangle = J(a,b) - \delta(\underbrace{m_{s_a}^2, m_{s_b}^2) K(a,b)}_{\text{DIRECT}} \underbrace{\left| \begin{array}{c} \text{Spins must match or} \\ \text{K term will vanish} \end{array} \right|}_{\text{Exchange}} \right\rangle$$
(This is how singlet and triplet states have different E even though $1/r_{ij}$ does not operate on the spin factor.)

$$J(a,b) \equiv \left\langle \stackrel{e^2}{ab} \middle| \frac{e^2}{r_{12}} \middle| ab \right\rangle = \sum_{k=0}^{\infty} c^k \left(\ell_a m_{\ell_a}, \ell_a m_{\ell_a} \right) c^k \left(\ell_b m_{\ell_b}, \ell_b m_{\ell_b} \right) \times F^k \left(n_a \ell_a, n_b \ell_b \right)$$

$$a^k \left(\ell_a m_{\ell_a}, \ell_b m_{\ell_b} \right) \qquad \left[\iint a * (1) a(1) \hat{\mathbf{O}} \mathbf{p} b * (2) b(2) d\tau_1 d\tau_2 \right]$$

$$classical \text{ charge distributions}$$

$$K(a,b) \equiv \left\langle \stackrel{e^2}{ab} \middle| \frac{e^2}{r_{12}} \middle| ba \right\rangle = \delta \left(m_{s_a}, m_{s_b} \right) \sum_{k=0}^{\infty} \left[c^k \left(\ell_a m_{\ell_a}, \ell_b m_{\ell_b} \right) \right]^2 G^k \left(n_a \ell_a, n_b \ell_b \right)$$

$$b^k \left(\ell_a m_{\ell_a}, \ell_b m_{\ell_b} \right)$$

$$\left[\iint a * (1) b(1) \hat{\mathbf{O}} \mathbf{p} a(2) b * (2) d\tau_1 d\tau_2 \right]$$
something not classical!

for special cases, such as nd^2 , we have the simplified result that $n_a\ell_a$ = $n_b\ell_b$ and F^k = G^k

Now we are ready to set up tables of c^k (or, more conveniently, a^k and b^k) to evaluate the e^2/r_{ij} matrix.

Easy example: nf²

convenient

factor

(recall that L-S terms of f^2 are 1I , 3H , 1G , 3F , 1D , 3P , 1S)

$$\begin{vmatrix} {}^{1}I 60 \rangle = ||3\alpha 3\beta|| \\ ||^{3}H 51 \rangle = ||3\alpha 2\alpha|| \end{vmatrix}$$

 ${}^{1}I$ and ${}^{3}H$ are the only *L-S* states from the f^{2} configuration that are represented by a single Slater determinant — extremes of the M_L, M_S box diagram.

[You really do not want to calculate off-diagonal matrix elements of a two-electron operator if you

Since e^2/r_{ij} is a scalar operator with respect to $\hat{\mathbf{L}}$, $\hat{\mathbf{S}}$, $\hat{\mathbf{J}}$, matrix elements are M_L , M_S , and M_J independent — so we can use any M_L , M_S component to evaluate the matrix

and
$$M_{J}$$
 independent — so we can use $any \ M_{L}, M_{S}$ component to evaluate the matrix element — whichever is most convenient!
$$\begin{pmatrix} 1 & e^{2} & I \\ \hline r_{12} & I \end{pmatrix} = \sum_{k=0,2,4,6} c^{k} (33,33)c^{k} (33,33)F^{k} (nf,nf) - \delta(\alpha,\beta) \sum_{k} \left[c^{k} (33,33) \right]^{2} G^{k} (nf,nf)$$

$$= \sum_{k=0,2,4,6} \left[c^{k} (33,33) \right]^{2} F^{k} (nf,nf)$$

$$= \sum_{k=0,2,4,6} \left[c^{k$$

Use table of c^k in Golding (page 41)/C&S handout (C&S page 179).

Note that $[1/(7361 \cdot 64)]^{1/2}$ is implicit after the first entry for f^2 , k = 6. Here is where everyone makes mistakes!

	k = 0	2	4	6
$c^{k}(33,33)$	1	-1/3	1/11	$-[1/7361 \cdot 64]^{1/2}$
$c^k(32,32)$	1	0	-7/33	+[36/7361•64] ^{1/2}
$c^{k}(33,32)$	0	+1/3	$-30^{1/2}/33$	+[7/7361•64] ^{1/2}
D_k	1	225	$1089 = 33^2$	7361•64
_				

C&S Table: the number listed goes inside the SQRT replacing the numerator in the first row. D_k is a factor that simplifies the expressions. Each term has the form F^k/D_k . Call this ratio F_k [notice F^k vs. F_k]. Get simpler looking expressions when you replace F^k by $D_k F_k$ (D_k appears in denominators of c^k as $[.../D_k]^{1/2}$)

$$\left\langle {}^{1}I \middle| \frac{e^{2}}{r_{12}} \middle| {}^{1}I \right\rangle = F^{0} + \left(\frac{1}{9}\right)F^{2} + \left(\frac{1}{121}\right)F^{4} + \left(\frac{1}{7361 \cdot 64}\right)F^{6}$$

$$= F_{0} + 25F_{2} + 9F_{4} + F_{6}$$
Always have the product of two factors of c^{k} . Thus F^{k} gets divided by D_{k} to yield F_{k} .

Always have the

$$\left\langle {}^{3}H \middle| \frac{e^{2}}{r_{12}} \middle| {}^{3}H \right\rangle = F^{0} + \left[\left(-\frac{1}{3} \right) (0) - \left(\frac{1}{3} \right)^{2} \right] F^{2} + \left[\left(\frac{1}{11} \right) \left(\frac{-7}{33} \right) - \frac{30}{33 \cdot 33} \right] F^{4} + \left[\frac{-6 - 7}{7361 \cdot 64} \right] F^{6}$$

$$= F^{0} - \frac{1}{9} F^{2} - \frac{51}{\left(33 \right)^{2}} F^{4} \frac{-13}{7361 \cdot 64} F^{6}$$

$$= F_{0} - 25 F_{2} - 51 F_{4} - 13 F_{6}$$

A lot of bookkeeping, but it's possible to learn how to use tables of c^k , a^k , b^k , and D_k , except it is much more work for f^3 than for f^2 (but the job is not yet complete for the L-S terms beyond ${}^{1}I$ and ${}^{3}H!$

SUM RULE METHOD:

Basic idea is that the sum of all the diagonal elements in the single Slater determinant basis set within an M_L , M_S box is equal to the sum of the eigenvalues!

Look at the $M_L = 3$, $M_S = 1$ box: $||3\alpha 0\alpha||$ and $||2\alpha 1\alpha||$. This box generates $||^3H31\rangle$ and $|{}^{3}F31\rangle$, but the trace is $E({}^{3}H) + E({}^{3}F)$ and we already know $E({}^{3}H)!$

So
$$E({}^{1}I) = \langle ||3\alpha 3\beta|| \rangle$$

$$E({}^{3}H) = \langle ||3\alpha 2\alpha|| \rangle$$

$$E({}^{3}F) = \langle ||3\alpha 0\alpha|| \rangle + \langle ||2\alpha 1\alpha|| \rangle - E({}^{3}H)$$

$$E({}^{1}G) = \langle ||3\alpha 1\beta|| \rangle + \langle ||3\beta 1\alpha|| \rangle + \langle ||2\alpha 2\beta|| \rangle - E({}^{1}I) - E({}^{3}H)$$

$$E({}^{1}D) = \langle ||3\alpha - 1\beta|| \rangle + \langle ||3\beta - 1\alpha|| \rangle + \langle ||2\alpha 0\beta|| \rangle + \langle ||2\beta 0\alpha|| \rangle$$

$$+ \langle ||1\alpha 1\beta|| \rangle - E({}^{1}I) - E({}^{1}G) - E({}^{3}H) - E({}^{3}F)$$

$$E({}^{3}P) = \langle ||3\alpha - 2\alpha|| \rangle + \langle ||2\alpha - 1\alpha|| \rangle + \langle ||1\alpha 0\alpha|| \rangle - E({}^{3}H) - E({}^{3}F)$$

$$E({}^{1}S) = \text{sum of seven } \langle || || \rangle - \text{sum of six } E({}^{2S+1}L)$$

This seems exceptionally laborious, but it is much easier than:

- * generating each $|LM_L = L SM_S = S\rangle$ eigen-state as an explicit linear combination of Slater determinants
- * then calculating matrix elements of e^2/r_{ij} , because there are many nonzero off-diagonal matrix elements between Slater determinants in the same M_L, M_S box.

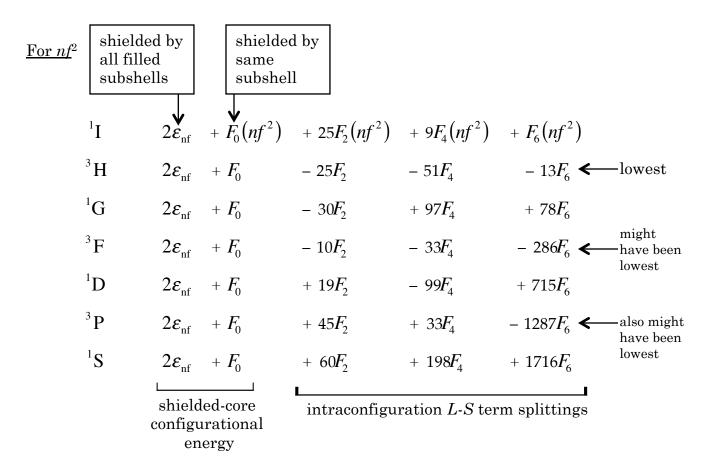
Here is the final result for the energies of all of the $(nf)^{2}$ ^{2S+1}L terms:

$$\begin{split} E &= E^{(0)} + E^{(1)} + E^{(2)} \\ E^{(0)} &= \text{ sum of orbital energies from } \mathbf{h}^{(0)} = -\frac{Z^2 R}{n^2} = \varepsilon_{n\ell} \\ E^{(1)} &= \underbrace{\left\langle e^2 \middle/ r_{ij} \right\rangle}_{\text{ready now}} + \underbrace{\left\langle \mathbf{H}^{\text{SO}} \right\rangle}_{\text{next}} \end{split}$$

Bare nucleus hydrogenic orbital energy — or partly shielded by filled shells.

 $E^{(2)} = (\text{in} \underline{\text{trac}} \text{configurational spin-orbit}) + (\text{in} \underline{\text{ter}} \text{configurational } e^2/r_{ii})$

Configuration Interaction



(there is NO center of Gravity Rule for degeneracy weighted L-S terms)

Now it is easy to show that all F_k 's are > 0 and $F_k \gg E_{k+2}$ etc. (by roughly a factor of 10 per step in k).

From this we get an **empirical rule** (<u>empirical</u> because we expect that contributions to E(L,S) from F_4 and F_6 can be ignored).

Lowest *E* of all *L*–*S* terms is the one with

- * MAXIMUM S
- * of those with Maximum S, lowest is the one with MAXIMUM L.

These are <u>Hund's</u> **first** and **second** (of three) <u>rules</u>.

Note also that Hund's rules make no predictions about the energy order of L-S terms except for the identity of the single, lowest energy L-S term.

Non-Lecture

There are several interesting problems also solved by this e^2/r_{ii} formalism.

1. The energy splittings between and the Slater determinantal characters of two or more L,S terms of the same L and S that belong to the same electronic configuration

e.g. $d^3 \rightarrow \text{two } ^2D \text{ terms}$ see pages 47-50 of Golding for 2×2 secular determinant for 2D of d^3

2. matrix elements of e^2/r_{ij} between same-L,S terms that belong to two different configurations

e.g. nd^2 ${}^1S, {}^3P, {}^1D, {}^3F, {}^1G$ $\operatorname{ndn'd}$ $\left\{{}^1S, {}^3P, {}^1D, {}^3F, {}^1G\right\}$ no Pauli restrictions

choose any pair of orthogonal combinations of Slaters. What you choose determines the values of the off-diagonal matrix elements but not the eigenenergies

So, for L-S terms that belong to the nd2 configurations, there will be

$$^{1}S\sim^{1}S$$
 $^{3}P\sim^{3}P$
 $^{1}D\sim^{1}D$
 $^{3}F\sim^{3}F$
 $^{1}G\sim^{1}G$

interconfigurational interaction matrix elements and each of these 5 interaction matrix elements will NOT be of the same magnitude. There will be different Configuration Interaction energy shifts for the various L-S terms in a configuration.

Knowing the single configuration expected pattern of L-S states (energies and other properties) enables detection of local inter-configuration perturbations. Predicted patterns are EVERYTHING to an experimentalist!

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.