## $\underline{e}^{2} / \underline{r}_{\mathrm{ij}}$ and Slater Sum Rule Method

LAST TIME:

1. The $\mathbf{L}^{2}, \mathbf{S}^{2}$ matrix method for setting up $\left|\mathrm{NLM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ manyelectron basis states in terms of linear combination of Slater determinants $\quad \mathbf{L}^{2} \rightarrow \mathbf{L}_{+} \mathbf{L}_{-}$
$* \mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ block: $\mathbf{S}^{2} \rightarrow \mathbf{S}_{+} \mathbf{S}_{-}$

* diagonalize $\mathbf{S}^{2}$ (singlets and triplets)
* diagonalize $\mathbf{L}^{2}$ in same basis that diagonalizes $\mathbf{S}^{2}$
[Recall: to get matrix elements of $\mathbf{L}^{2}$, first evaluate $\left.\mathbf{L}^{2}\| \| \psi_{i} \|\right\rangle$ and then left multiply by $\left\langle\left\|\psi_{j}\right\| \|\right]$

2. coupled representations $|\mathrm{nj} \omega \ell \mathrm{s}\rangle$ and $\left|N J L S M_{J}\right\rangle$
3. Projection operators: automated projection of $\mathbf{L}^{2}$ eigenfunctions

* remove unwanted $L^{\prime \prime}$ part
* preserve normalization of wanted $L^{\prime}$ part
* remove overlap factor
* easy to write computer program that automates the projection method


## TODAY:

1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.
2. Evaluate $\sum_{i>j} e^{2} / r_{i j}$ matrix elements (tedious, but good for you)
[ $1 / r_{i j}$ is a $2-e^{-}$operator that involves spatial coordinates only, scalar with respect to $\mathbf{J}, \mathbf{L}$, and $\mathbf{S}]$.

* multipole expansion of charge distribution due to "other electrons"
* matrix element selection rules for $e^{2} / r_{i j}$ in both Slater determinantal and many- $e^{-}$basis sets
* Gaunt Coefficients ( $c^{k}$ ) (tabulated) and Slater-Condon ( $F^{k}, G^{k}$ ) Coulomb and Exchange parameters. Because of the sum rule, can evaluate most $\langle a b| \frac{1}{r_{i j}}|a b\rangle$ and $\langle a b| \frac{1}{r_{i j}}|b a\rangle$ type matrix elements and never need to evaluate $\langle a b| \frac{1}{r_{i j}}|c d\rangle$-type matrix elements except when the configuration includes two same-L,S terms.

3. Apply Sum Rule Method
4. Hund's $1^{\text {st }}$ and $2^{\text {nd }}$ Rules

## 1. Slater's Sum Rule Method

It is almost always possible to evaluate $e^{2 / r_{i j}}$ matrix elements without solving for all | $\left.L M_{L} S M s\right\rangle$ basis states

* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)
* $\sum_{i>j} e^{2} / r_{i j}$ and every scalar operator with respect to $\hat{J}$ (or $\hat{L}, \hat{S}$ ) has non-zero matrix elements diagonal in $J$ and $M_{J}$ (or $L$ and $M_{L}$ ) and independent of $M_{J}$ (or $M_{L}, M_{S}$ )
[W-E Theorem: J is the GENERIC ANGULAR MOMENTUM with respect to which $e^{2 /} r_{i j}$ is classified]

Recall from definition of $\mathrm{r}_{12}$, that $e^{2 / r_{i j}}$ is a scalar operator with respect to $\widehat{\boldsymbol{J}}, \widehat{\boldsymbol{L}}, \widehat{\boldsymbol{S}}$ but not with respect to $\mathbf{j}_{\mathbf{i}}$ or $\boldsymbol{\ell}_{\mathrm{i}}$.

Interelectronic Repulsion: $\sum_{i>j} \mathrm{e}^{2} / r_{i j}$

* destroys the single-electron orbital approximation $|n \ell \lambda\rangle$ for electronic structure calculations
* "correlation energy," "shielding" $\square$


$$
\begin{aligned}
& e_{1}^{-} \text {at }\left(r_{1}, \theta_{1}, \phi_{1}\right) \\
& e_{2}^{-} \text {at }\left(r_{2}, \theta_{2}, \phi_{2}\right)
\end{aligned}
$$

$$
\vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1}
$$

Scalar with respect
to $\mathbf{J}, \mathbf{L}, \mathbf{S}, \mathbf{s}_{\mathrm{i}}$ but not $\mathbf{j}_{\mathbf{i}}, \ell_{\mathrm{i}}$. Do you know why?

$$
\longrightarrow r_{12}^{2}=r_{1}^{2}-2 r_{1} \cdot r_{2}+r_{2}^{2}
$$

$$
r_{12}=\left[r_{1}^{2}+r_{2}^{2}-2\left|r_{1}\right|\left|r_{2}\right| \cos \left(\vec{r}_{1}, \vec{r}_{2}\right)\right]^{1 / 2}
$$

expand $r_{12}^{-1}$ as power series in $\left(\frac{r_{\leq}}{r_{>}}\right)$
where $r_{<}$is the smaller of $\left|r_{1}\right|,\left|r_{2}\right|$
(integrals evaluated in 2 regions: $r_{1}<r_{2}, r_{2}<r_{1}$ )
the larger $r_{i}$ is seeing the multipoles of the smaller $r_{j}$
lengthy algebra $\left[\begin{array}{l}\text { see Eyring, Walter, and Kimball, "Quantum Chemistry", } \\ \text { pages 369-371 and, for relationship between Legendre } \\ \text { polynomials and } Y_{\ell}^{m}(\theta, \phi) \text {, pages 52-59. }\end{array}\right]$
will evaluate for orbitals occupied by $i^{\text {th }} e^{-}$


An n -pole charge distribution is an n -th rank tensor with $2 \mathrm{n}+1$ components.

No dependence on electron spin, so $1 / r_{i j}$ is scalar with respect to $\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}$.

$$
\left[Y_{n}^{m}\left(\theta_{i}, \phi_{i}\right)=\left\langle\theta_{i}, \phi_{i} \mid \ell_{i}=\underset{\text { indices of } Y_{n}^{m}}{n, m_{\ell_{i}}=m}\right\rangle\right]
$$

The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of $r_{\mathrm{i}}, \theta_{\mathrm{i}}, \phi_{\mathrm{i}}$, which are the coordinates of the i-th $\mathrm{e}^{-}$with respect to the center of symmetry (nucleus) rather than the other $\mathrm{e}^{-}$. It enables use of atomic orbital basis states. Otherwise the $1 / r_{\mathrm{ij}}$ integrals would be nightmares.

$$
Y_{n}^{m}(\theta, \phi)=\left\langle\theta, \phi \mid n=\ell, m=m_{\ell}\right\rangle
$$

Selection rules for matrix elements:

$$
\left\langle\ell_{i} m_{i}\right| Y_{n}^{m}\left|\ell_{i}^{\prime} m_{i}^{\prime}\right\rangle\left\langle\ell_{j} m_{j}\right| Y_{n}^{m}\left|\ell_{j}^{\prime} m_{j}^{\prime}\right\rangle
$$


triangle rule, $\left|\ell_{i}-\ell_{i}^{\prime}\right| \leq n \leq \ell_{i}+\ell_{i}^{\prime}$ term in multipole expansion
(non-zero for steps in $n$ of an even number because of parity)
? $\left[\begin{array}{l}\text { overall: } \Delta L=0, \Delta S=0, \Delta M_{L}=0, \Delta M_{S}=0, \text { and independent of } M_{L}, \\ M_{S} \text {. Can use any } M_{L}, M_{S} \text { Slater determinant from the box diagram. }\end{array}\right.$

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also Condon and Shortley pages 178-179, Golding, page 41).
general $1 / r_{12}$ matrix element (non-zero matrix elements of the $1 / r_{12}$ operator follow the $\Delta \mathrm{s}$-o $=0,1$, and 2 spin-orbital selection rule for change in spin-orbitals)

$$
\begin{aligned}
& \left.\langle |\left|\underset{\mathrm{e}_{1}^{-}}{a b\left|\left\|\mathrm{l} / r_{12}|\|| c d\right.\right.} \underset{d}{\mathrm{e}_{2}^{-}} d\right|\right\rangle=\langle a b| \frac{1}{r_{12}}|c d\rangle-\langle a b| \frac{1}{r_{12}}|d c\rangle
\end{aligned}
$$

$\sum^{\infty}$
tensor rank for
product of AOs
occupied by $\mathrm{e}^{-}$\#1
must be same
as for $\mathrm{e}^{-}$\#2 for scalar
product of two
n-th rank tensors

$$
c^{k}\left(\ell m_{\ell}, \ell^{\prime} m_{\ell^{\prime}}\right) \equiv\left[\frac{2 \ell^{\prime}+1}{2 \ell+1}\right]^{1 / 2} A_{000}^{k \ell \ell^{\prime}} A_{m_{\ell}-m_{\ell}^{\prime}, m_{\ell}^{\prime}-m_{\ell}}^{k \ell^{\prime} \ell}
$$

tabulated
triangle rule: $\quad\left|\ell-\ell^{\prime}\right| \leq k \leq \ell+\ell^{\prime}$

$$
\ell+\ell^{\prime}+k=\text { even } \quad\left(\text { from properties of } A_{000}^{k \ell^{\prime}}\right) \text { (including parity) }
$$

restrictions on k and $\mathrm{m}: \quad e_{1}^{-}$integral $\quad m_{\ell_{1}}+m=m_{\ell_{1}}^{\prime}$

$$
\left\langle n_{1} \ell_{\substack{\ell_{1} \\ \text { triangle rule }}} m_{\ell_{1}}\right| Y_{k}^{m}\left|n_{1}^{\prime} \ell_{1}^{\prime} m_{\ell_{1}}^{\prime}\right\rangle
$$

For intra-configuration matrix elements, $R^{k}(a b c d)$ has an especially simple form (because the same one or two orbitals appear in both the bra and in the ket).

$$
\left.\left.R^{k}(a b, a b) \equiv F^{k}(a, b)\right\} \begin{array}{l}
R^{k}(a b, b a) \equiv G^{k}(a, b)
\end{array}\right\} \begin{aligned}
& \text { "Slater - Condon" parameters } \\
& \begin{array}{l}
\text { (these are reduced matrix elements dependent only on } \ell_{\mathrm{a}} \\
\ell_{b}, \\
\ell_{\mathrm{l}}, \ell_{\mathrm{c}}, \ell_{d} \text { and not on any of the } m_{\ell} \text { quantum numbers.) All } \\
L-S \text { states that belong to the same configuration are } \\
\text { expressed in terms of the same set of } F^{k}, G^{k} \text { parameters. }
\end{array}
\end{aligned}
$$

$$
\langle\|a b|\|\frac{e^{2}}{r_{12}}|||a b \|\rangle=J(a, b)-\delta(\underbrace{\substack{\text { Silins must match or } \\ \mathrm{K} \text { term will vanish }}}_{\left.m_{s_{a}}, m_{s_{b}}\right) K(a, b)}
$$ triplet states have different E even though $1 / \mathrm{r}_{\mathrm{ij}}$ does not operate on the spin factor.)

for special cases, such as $n d^{2}$, we have the simplified result that $n_{a} \ell_{a}=n_{b} \ell_{b}$ and $F^{k}=G^{k}$

Now we are ready to set up tables of $c^{k}$ (or, more conveniently, $a^{k}$ and $b^{k}$ ) to evaluate the $e^{2 / r} r_{i j}$ matrix.

$$
\begin{aligned}
& K(a, b) \equiv\langle\underset{a b}{\downarrow}| \frac{e^{2}}{r_{12}}|\overrightarrow{b a}\rangle=\delta\left(m_{s_{a}}, m_{s_{b}}\right) \sum_{k=0}^{\infty} \underbrace{\left[c ^ { k } \left(\ell_{a}{\left.\underset{\ell_{a}}{ }, \ell_{b} m_{\ell_{b}}\right)}_{\downarrow}^{\downarrow} G^{k}\left(n_{a} \ell_{a}, n_{b} \ell_{b}\right)\right.\right.}_{b^{k}\left(\ell_{a} m_{\ell_{a}}, \ell_{b} m_{\ell_{b}}\right)} \\
& {\left[\iint a^{*}(1) b(1) \hat{\mathbf{O}} \mathbf{p} a(2) b^{*}(2) d \tau_{1} d \tau_{2}\right]} \\
& \text { something not classical! }
\end{aligned}
$$

(recall that $L$ - $S$ terms of $f$ are ${ }^{1} I,{ }^{3} H,{ }^{1} G,{ }^{3} F,{ }^{1} D,{ }^{3} P,{ }^{1} S$ )
${ }^{1} I$ and ${ }^{3} H$ are the only $L-S$ states from the $f^{2}$
$\left|{ }^{1} I 60\right\rangle=\|3 \alpha 3 \beta\|$ configuration that are represented by a single Slater determinant - extremes of the $M_{L}, M_{S}$ box diagram.
$\left|{ }^{3} H 51\right\rangle=\|3 \alpha 2 \alpha\| \mid$
matrix elements of a two-electron operator if you can help it!]

Since $e^{2} / r_{i j}$ is a scalar operator with respect to $\hat{\mathbf{L}}, \hat{\mathbf{S}}, \hat{\mathbf{J}}$, matrix elements are $M_{L}, M_{S}$, and $M_{J}$ independent - so we can use any $M_{L}, M_{S}$ component to evaluate the matrix element - whichever is most convenient!

$$
\begin{aligned}
& =\sum_{k=0,2,4,6}\left[c^{k}(33,33)\right]^{2} F^{k}(n f, n f) \\
& \left.\left.\left\langle{ }^{3} H\right| \frac{e^{2}}{r_{12}}\right|^{3} H\right\rangle=\sum_{k=0,2,4,6}\left\{\left[c^{k}\left(\frac{e_{1}^{-}, e_{1}^{-}}{33,33}\right) c^{k=0,2,4,6} \begin{array}{c}
e_{2}^{-}, e_{1}^{-} \\
e_{1}^{-}
\end{array}\right.\right.
\end{aligned}
$$

Use table of $c^{k}$ in Golding (page 41)/C\&S handout (C\&S page 179).
Note that $[1 /(7361 \cdot 64)]^{1 / 2}$ is implicit after the first entry for $\mathrm{f}^{2}, k=6$.
Here is where everyone makes mistakes!

|  | $\mathrm{k}=0$ | 2 | 4 | 6 |
| :--- | :---: | :---: | :---: | :---: |
| $c^{k}(33,33)$ | 1 | $-1 / 3$ | $1 / 11$ | $-[1 / 7361 \cdot 64]^{1 / 2}$ |
| $c^{k}(32,32)$ | 1 | 0 | $-7 / 33$ | $+[36 / 7361 \cdot 64]^{1 / 2}$ |
| $c^{k}(33,32)$ | 0 | $+1 / 3$ | $-30^{1 / 2} / 33$ | $+[7 / 7361 \cdot 64]^{1 / 2}$ |
| $D_{k}$ | 1 | 225 | $1089=33^{2}$ | $7361 \cdot 64$ |

C\&S Table: the number listed goes inside the SQRT replacing the numerator in the first row.
$D_{\mathrm{k}}$ is a factor that simplifies the expressions. Each term has the form $F^{k} / D_{k}$. Call this ratio $F_{k}$ [notice $F^{k}$ vs. $F_{k}$ ]. Get simpler looking expressions when you replace $F^{k}$ by $D_{k} F_{k}\left(D_{k}\right.$ appears in denominators of $c^{k}$ as $\left.\left[\ldots / D_{k}\right]^{1 / 2}\right)$

$$
\begin{aligned}
\left.\left\langle{ }^{1}\right|\left|\frac{e^{2}}{r_{12}}\right|{ }^{1} I\right\rangle & =F^{0}+\left(\frac{1}{9}\right) F^{2}+\left(\frac{1}{121}\right) F^{4}+\left(\frac{1}{7361 \cdot 64}\right) F^{6} \\
& =F_{0}+25 F_{2}+9 F_{4}+F_{6}
\end{aligned}
$$

Always have the
product of two factors of $c^{k}$. Thus $\mathrm{F}^{\mathrm{k}}$ gets divided by $\mathrm{D}_{\mathrm{k}}$ to yield $\mathrm{F}_{\mathrm{k}}$.

$$
\begin{aligned}
\left\langle{ }^{3} H\right| \frac{e^{2}}{r_{12}}\left|{ }^{3} H\right\rangle & =F^{0}+\left[\left(-\frac{1}{3}\right)(0)-(1 / 3)^{2}\right] F^{2}+\left[\left(\frac{1}{11}\right)\left(\frac{-7}{33}\right)-\frac{30}{33 \cdot 33}\right] F^{4}+\left[\frac{-6-7}{7361 \cdot 64}\right] F^{6} \\
& =F^{0}-\frac{1}{9} F^{2}-\frac{51}{(33)^{2}} F^{4} \frac{-13}{7361 \cdot 64} F^{6} \\
& =F_{0}-25 F_{2}-51 F_{4}-13 F_{6}
\end{aligned}
$$

A lot of bookkeeping, but it's possible to learn how to use tables of $c^{k}, a^{k}, b^{k}$, and $D_{k}$, except it is much more work for $f^{3}$ than for $f^{2}$ (but the job is not yet complete for the $L-S$ terms beyond ${ }^{1} I$ and ${ }^{3} H$ ?

## SUM RULE METHOD:

Basic idea is that the sum of all the diagonal elements in the single Slater determinant basis set within an $M_{L}, M_{S}$ box is equal to the sum of the eigenvalues!
Look at the $M_{L}=3, M_{S}=1$ box: $\|3 \alpha 0 \alpha\|$ and $\|2 \alpha 1 \alpha\|$. This box generates $\left|{ }^{3} H 31\right\rangle$ and $\left|{ }^{3} F 31\right\rangle$, but the trace is $E\left({ }^{3} H\right)+E\left({ }^{3} F\right)$ and we already know $E\left({ }^{3} H\right)$ !
So $\quad E\left({ }^{1} I\right)=\langle\|3 \alpha 3 \beta\|\rangle$

$$
E\left({ }^{3} H\right)=\langle\|3 \alpha 2 \alpha\|\rangle
$$

$$
E\left({ }^{3} F\right)=\langle ||3 \alpha 0 \alpha|| \rangle+\langle ||2 \alpha 1 \alpha|| \rangle-E\left({ }^{3} H\right)
$$

$$
E\left({ }^{1} G\right)=\langle ||3 \alpha 1 \beta \|\rangle+\left\langle\left\| 3 \beta 1 \alpha|\|\rangle+\langle\|2 \alpha 2 \beta\|\rangle-E\left({ }^{1} I\right)-E\left({ }^{3} H\right)\right.\right.
$$

$$
E\left({ }^{1} D\right)=\langle\|3 \alpha-1 \beta\|\rangle+\langle\|3 \beta-1 \alpha|\|\rangle+\langle\|2 \alpha 0 \beta\|\rangle+\langle\|2 \beta 0 \alpha\|\rangle
$$

$$
+\langle ||1 \alpha 1 \beta \|\rangle-E\left({ }^{1} I\right)-E\left({ }^{1} G\right)-E\left({ }^{3} H\right)-E\left({ }^{3} F\right)
$$

$$
E\left({ }^{3} P\right)=\left\langle\left\| 3 \alpha-2 \alpha|\|\rangle+\left\langle\left\| 2 \alpha-1 \alpha|\|\rangle+\langle ||1 \alpha 0 \alpha \|\rangle-E\left({ }^{3} H\right)-E\left({ }^{3} F\right)\right.\right.\right.\right.
$$

$$
E\left({ }^{1} S\right)=\operatorname{sum} \text { of seven }\left\langle\|\|\rangle-\operatorname{sum} \text { of } \operatorname{six} E\left({ }^{2 S+1} L\right)\right.
$$

### 5.73 Lecture \#34

This seems exceptionally laborious, but it is much easier than:

* generating each $\left|L M_{L}=L \quad S M_{S}=S\right\rangle$ eigen-state as an explicit linear combination of Slater determinants
* then calculating matrix elements of $e^{2} / r_{i j}$, because there are many nonzero offdiagonal matrix elements between Slater determinants in the same $M_{L}, M_{S}$ box.

Here is the final result for the energies of all of the $(n f)^{2}{ }^{2 \mathrm{~S}+1} L$ terms:

$$
\begin{array}{ll}
E=E^{(0)}+E^{(1)}+E^{(2)} \\
E^{(0)}=\text { sum of orbital energies from } \mathbf{h}^{(0)}=-\frac{Z^{2} R}{n^{2}}=\varepsilon_{n \ell} & \begin{array}{l}
\mathrm{Ba} \\
\text { hy } \\
\text { en } \\
\text { sh }
\end{array} \\
E^{(1)}=\underbrace{\left\langle e^{2} / r_{i j}\right\rangle}_{\text {ready now }}+\underbrace{\left\langle\mathbf{H}^{\text {So }}\right\rangle}_{\text {next }} & \text { lecture } \\
E^{(2)}=(\text { intraconfiguraional spin-orbit })+\left(\text { interconfigurational } e^{2} / r_{i j}\right)
\end{array}
$$

Configuration Interaction

(there is NO center of Gravity Rule for degeneracy weighted $L$ - $S$ terms)

Now it is easy to show that all $F_{\mathrm{k}}{ }^{\prime} \mathrm{s}$ are $>0$ and $F_{\mathrm{k}} \gg \square_{\mathrm{k}+2}$ etc. (by roughly a factor of 10 per step in $k$ ).

From this we get an empirical rule (empirical because we expect that contributions to $E(L, S)$ from $F_{4}$ and $F_{6}$ can be ignored).
Lowest $E$ of all $L-S$ terms is the one with

* MAXIMUM $S$
* of those with Maximum $S$, lowest is the one with MAXIMUM $L$.


## These are Hund's first and second (of three) rules.

Note also that Hund's rules make no predictions about the energy order of $L$-S terms except for the identity of the single, lowest energy $L-S$ term.

## Non-Lecture

There are several interesting problems also solved by this $e^{2} / r_{i j}$ formalism.

1. The energy splittings between and the Slater determinantal characters of two or more $L, S$ terms of the same $L$ and S that belong to the same electronic configuration
e.g. $d^{3} \rightarrow$ two ${ }^{2} D$ terms
see pages $47-50$ of Golding for $2 \times 2$ secular determinant for ${ }^{2} D$ of $\left.d^{3}\right]$
2. matrix elements of $e^{2} / r_{i j}$ between same $-L, S$ terms that belong to two different configurations
e.g. $\quad \mathrm{nd}^{2} \quad{ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F,{ }^{1} G$
ndn'd $\left\{\begin{array}{l}{ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F, G \\ { }^{3} S,{ }^{1} P,{ }^{1} D,{ }^{1} F,{ }^{3} G\end{array}\right\}$ no Pauli restrictions

> choose any pair of orthogonal combinations of Slaters. What you choose determines the values of the off-diagonal matrix elements but not the eigenenergies

So, for L-S terms that belong to the nd2 configurations, there will be

$$
\begin{aligned}
& { }^{1} S \sim^{1} S \\
& { }^{3} P \sim^{3} P \\
& { }^{1} D \sim^{1} D \\
& { }^{3} F \sim^{3} F \\
& { }^{1} G \sim^{1} G
\end{aligned}
$$

interconfigurational interaction matrix elements and each of these 5 interaction matrix elements will NOT be of the same magnitude. There will be different Configuration Interaction energy shifts for the various $L-S$ terms in a configuration.

Knowing the single configuration expected pattern of $L-S$ states (energies and other properties) enables detection of local inter-configuration perturbations. Predicted patterns are EVERYTHING to an experimentalist!

MIT OpenCourseWare
https://ocw.mit.edu/

### 5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

