SPIN - ORBIT: Many-Electron $\varsigma(N, L, S) \leftrightarrow Single-Orbital \varsigma_{n\ell} Coupling Constants$		
<u>LAST TIME</u> :	$\sum_{i\geq j}e^{2}/r_{ij}$	death of orbital picture expansion of $1/r_{ij}$: multipoles, integrals over AOs in nucleus-centered coordinates SELECTION RULES: orbital and many-e ⁻ basis sets Gaunt Coefficients: a^k, b^k, c^k [products of 3-j coefficients] Slater-Condon $(F^k, G^k) \rightarrow (F_k, G_k)$ Parameters Sum Rule Method - avoid necessity to derive: *eigenvectors * off-diagonal elements in Slater basis Hund's 1st and 2nd Rules \rightarrow predict lowest L-S term of configuration based on rapid decrease in size of F_k as k increases

A single-configuration pattern of assigned L-S terms.

For nf² there are 91 Slater determinants. To use the sum rule method to get the relative energies of all 7 L-S terms (¹I, ³H, ¹G, ³F, ¹D, ³P, ¹S), it turns out it is necessary to compute 28 *diagonal* matrix elements in the f² Slater determinantal basis set. This is wonderful because it is unnecessary to compute any off-diagonal matrix elements (see page 34-8). These L-S term energies are expressed in terms of F_0 , F_2 , F_4 , and F_6 (and G_k) Slater-Condon parameters.

TODAY:

A. General Importance of spin-orbit term

 $\mathbf{H}^{\mathrm{SO}} = \sum_{i} a(r_{i}) \hat{\boldsymbol{\ell}}_{1} \hat{\mathbf{s}}_{1} \qquad 1 - e^{-} \text{ operator}$

- B. *Trick*: replace 1–e⁻ operator by more convenient $\zeta(N,L,S)\mathbf{L} \cdot \mathbf{S}$ for $\Delta \mathbf{S} = 0$, $\Delta \mathbf{L} = 0$ special case matrix elements
- C. *Pattern*: Landé Interval Rule (Patterns are for breaking! Broken patterns provide information about "dark" states)

- D. **H**^{SO} matrix elements in Slater Determinantal Basis Set
 - * another operator replacement
 - * A single-orbital integral is the most fundamental control parameter: n, ℓ -scaling of $\zeta_{n\ell}$
 - * $\zeta_{n\ell} \leftrightarrow \zeta(N, L, S)$ relationship between a single-orbital coupling constant and that for a specific *L*-*S* state
 - * off-diagonal spin-orbit matrix elements: $\Delta L \neq 0$, $\Delta S \neq 0$, $\Delta J = 0$.

PATTERN BREAKING

next time \rightarrow Hund's 3rd Rule and Lande g_J-factors

A. Importance of spin-orbit

- H^{SO} produces diagnostically significant "fine structure" CONFIGURATIONAL ASSIGNMENTS (based on which L-S terms are present and the ± signs of spin-orbit splittings) L,S term assignments are based on
 - PATTERNS:* # components
 - * sign of pattern (largest splitting on top or on bottom)
 - * statistical weight (2J + 1) of lowest vs. highest energy component
 - * overall magnitude of splitting
- 2. for heavy atoms, \mathbf{H}^{SO} is responsible for such large splittings and off-diagonal interactions that L-S terms "vanish", ΔS selection rules are violated. "Inter-System Crossing (ISC)".

Need to "deperturb" to recover F_k , G_k inter-electronic $(1/r_{ij})$ parameters which should vary smoothly from atom to atom (isoelectronic series) (shielding rules). Periodicity! The PERIODIC TABLE

- Spin-forbidden transitions provide energy linkages between manifolds of states with different values of S. "InterSystem Crossing (ISC)", e.g. Hg ³P₁ ← ¹S₀ 254nm
- 4. Non-textbook Zeeman tuning coefficients (clues about unobserved "dark" states) finer detail to be used after S-O patterns reduce the possibilities that must be considered.
- Atoms, Molecules, Quantum Dots, solids: in an electronic transition, light acts on a single e⁻ and operates exclusively on the spatial part of $\psi \rightarrow$ spin-flips are forbidden except when H^{SO} mixes states of different S — forbidden transitions "borrow" intensity from allowed transitions. In the time-domain: a short pulse prepares, at t = 0, a non-eigenstate that is a pure Δ S = 0 excitation (and $\Delta \ell = \pm 1$) basis state. The "pluck"!

Language: the name of each eigenstate is based on its dominant (i.e., "nominal") character. It is the name of the dominant basis state. Use of the same name for both *eigenstate* and *basis state* is a source of confusion.

B. Operator Replacement for H^{SO}

$$\mathbf{H}^{\text{SO}} = \sum_{i} a(r_i) \boldsymbol{\ell}_i \cdot \mathbf{s}_i \qquad \text{a one-} \mathbf{e}^- \text{ operator}$$

Wigner-Eckart Theorem for a vector operator — operator replacement for special cases where only $\Delta J = 0$ matrix elements are considered.

$$\left\langle JM_{J} | \hat{\mathbf{A}} | JM'_{J} \right\rangle = \left\langle J | | \hat{\mathbf{A}} | J \rangle \right\rangle \left\langle JM_{J} | \hat{\mathbf{J}} | JM'_{J} \right\rangle$$

$$\stackrel{\text{proportionality constant}}{\Delta J = 0} \xrightarrow{\text{matrix element of corresponding component of } \hat{\mathbf{J}}}$$

CTDL p. 1054 use projection theorem:
$$\mathbf{V}_{\parallel} = \frac{\langle \mathbf{J} \cdot \mathbf{V} \rangle}{\langle \mathbf{J}^2 \rangle} \mathbf{J}_{\parallel}$$

Especially useful when V is an angular momentum that is included in J.

Special case of $\Delta L = 0$, $\Delta S = 0$ matrix elements in $|NLM_LSM_S\rangle$ basis set

$$\mathbf{H}^{\mathrm{SO}} = \sum_{i} a(r_{i})\boldsymbol{\ell}_{i} \cdot \mathbf{s}_{i} \rightarrow \underbrace{\boldsymbol{\zeta}(N, L, S)\mathbf{L} \cdot \mathbf{S}}_{\text{operator}}$$

- * $\zeta(N,L,S) \equiv \sum_{i} \langle L || a(r_{i}) \ell_{i} || L \rangle \langle S || \mathbf{s}_{i} || S \rangle$
- * a different spin-orbit coupling constant for EACH L-S term of the N configuration (loss of simplicity)
- * convenient because it is easy to evaluate matrix elements of **L**·**S** without having to resort to use of the Slater determinantal basis set

ASIDE: $a(r_i)\ell_i$ and \mathbf{s}_i are both vectors with respect to \mathbf{J} , thus \mathbf{H}^{so} is scalar with respect to \mathbf{J} , hence matrix elements in the $|NJLSM_J\rangle$ basis set have 3 special characteristics: $\Delta J = 0, \Delta M_J = 0$, and independent of M_J .

CAUTION: the L·S operator seems to imply a $\Delta S = 0$ selection rule, but we *assumed* $\Delta S = 0$ in deriving the simplified form of H^{SO}: ζ L·S

C. Landé Interval Rule (useful for recognizing and assigning an isolated L-S term)

$$\mathbf{J} = \mathbf{L} + \mathbf{S} \qquad \mathbf{J}^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S}$$
$$\mathbf{L} \cdot \mathbf{S} = \frac{\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2}{2}$$
$$\left\langle NJLSM_J \middle| \mathbf{H}^{SO} \middle| NJLSM_J \right\rangle = \frac{\hbar^2}{2} \underbrace{\zeta(N, L, S)}_{\text{can be positive, zero, or negative}} \begin{bmatrix} J(J+1) - L(L+1) - S(S+1) \end{bmatrix}$$

So, within an L-S term, \mathbf{H}^{SO} causes splitting into 2S+1 (or 2L+1 if S > L) components.

energy of a multiplet = 0 (easiest to show from the trace of the \mathbf{H}^{SO} in $|LM_LSM_S\rangle$ basis). Off-diagonal elements (between same-J components of different L-S states) do not affect the trace of **H**^{SO}.

The interval rule plus the number of J-components of a multiplet determine the values of both L and S. ^{[4}P 5:3, 2 intervals; ²P 1 interval, ⁴D 7:5:3, 3 intervals]

D. Matrix Elements of \mathbf{H}^{SO} in Slater Determinantal Basis Set

GOALS: *
$$\Delta S \neq 0$$
 matrix elements, $\Delta L \neq 0$ matrix elements
* relationships between $\zeta(N,L,S)$ and $\zeta_{n\ell}$
L-S term orbital

* excluding interconfigurational **H**^{SO} matrix elements

NONLECTURE: alternative operator replacement for \mathbf{H}^{SO} that is appropriate for orbital matrix elements

 $\mathbf{H}^{\rm SO} = \sum_i a(r_i) \boldsymbol{\ell}_i \cdot \mathbf{s}_i$

replace $a(r_i)\ell_i$ by $\zeta_{n\ell}\ell_i$ using completeness:

$$\left\langle n'\ell'm_{\ell}'sm_{s}'|\mathbf{H}^{\mathrm{SO}}|n\ell m_{\ell}sm_{s}\right\rangle = \sum_{i}\sum_{n'} \left\langle n'\ell'm_{\ell}'sm_{s}'|a(r_{i})|n''\ell''m_{\ell}''sm_{s}''\rangle \left\langle n''\ell''m_{\ell}''sm_{s}''|\ell_{i}\cdot s_{i}|n\ell m_{\ell}sm_{s}\rangle \right\rangle_{\mathrm{completeness}}$$

- $a(r_i)$ is scalar with respect to $\mathbf{s}_i \to m'_s = m''_s$ and value is m'_s -independent
- $a(r_i)$ is scalar with respect to $\ell_i \to \ell' = \ell'', m'_\ell = m''_\ell$, and value is m'_ℓ -independent
- ℓ_i can't change ℓ in $|\ell m_\ell\rangle \rightarrow \ell'' = \ell$

 $\ell_{i} \cdot \mathbf{s}_{i} \quad \text{does not operate on radial part of } \psi \to n'' = n$ thus $\langle n'\ell'm'_{\ell}sm'_{s}|\mathbf{H}^{\text{SO}}|n\ell m_{\ell}sm_{s}\rangle = \delta_{\ell'\ell} \langle n'\ell'||a(r_{i})||n\ell\rangle \langle \ell m'_{\ell}sm'_{s}|\ell \cdot \mathbf{s}|\ell m_{\ell}sm_{s}\rangle$

$$\left\langle n'\ell || a(r_i) || n\ell \right\rangle = (n'n)^{-3/2} \zeta_{\ell}^{\circ} = \left(\frac{n'}{n}\right)^{-3/2} \underbrace{\zeta_{n\ell}}_{\text{Rydberg scaling for inner part of orbital}} = \left(\frac{n'}{n}\right)^{-3/2} \underbrace{\zeta_{n\ell}}_{\infty n^{-3}}$$
so, for $n' = n$, $\left\langle n\ell || a(r_i) || n\ell \right\rangle = \zeta_{n\ell} = n^{-3} \zeta_{\ell}^{\circ}$

Spin-orbit scaling for all members of a Rydberg series.

This reduction of \mathbf{H}^{SO} shows that, for atoms, \mathbf{H}^{SO} acts exclusively within a configuration except for interconfigurational matrix elements where the two configurations differ by a single spin-orbital of the same value of ℓ : $\underline{n\ell \leftrightarrow n'\ell}_{\text{same }\ell}$

Examples

A is a <u>single</u> Slater determinant

$$\left\langle A \middle| \mathbf{H}^{\mathrm{SO}} \middle| A \right\rangle = \sum_{\substack{k \\ \text{spin-orbitals}}} \left\langle u_{k} \middle| a(r_{k}) \ell_{k} \cdot \mathbf{s}_{k} \middle| u_{k} \right\rangle$$

$$= \sum_{\substack{k \\ k}} \zeta_{n_{k}\ell_{k}} \left\langle \ell_{k} m_{\ell_{k}} s_{k} m_{s_{k}} \middle| \underline{\ell \cdot s} \middle| \ell_{k} m_{\ell_{k}} s_{k} m_{s_{k}} \right\rangle$$

$$= \hbar^{2} \sum_{\substack{k \\ \text{spin-orbitals}}} \zeta_{n_{k}\ell_{k}} m_{\ell_{k}} m_{s_{k}}$$

if
$$|\mathbf{A}\rangle$$
 is also an eigenfunction of \mathbf{L}^2 , \mathbf{L}_z , \mathbf{S}^2 , and \mathbf{S}_z then
 $\langle NLM_L SM_S | \mathbf{H}^{SO} | NLM_L SM_S \rangle = \zeta(N, L, S) \hbar^2 M_L M_S$
 \vdots
 $\zeta(N, L, S) = \frac{\sum_k \zeta_{n_k \ell_k} m_{\ell_k} m_{s_k}}{M_L M_S}$

The matrix element is evaluated 2 ways in order to reduce a many-e⁻ spin-orbit coupling constant ($\varsigma(N,L,S)$) to a sum of one-e⁻ orbital coupling constants ($\varsigma_{n\ell}$)! This reveals the "periodicity" for which the periodic table is famous.

$$\begin{array}{ll} \underline{\text{Example 1}} & \text{nf}^{2} \ ^{3}\text{H uncoupled representation}_{3 \times 1/2} \ ^{2 \times 1/2} \\ \text{uncoupled} & \left| nf^{2} \ ^{3}H \ M_{L} = 5 \ M_{S} = 1 \right\rangle = \left\| 3\alpha 2\alpha \right\| \\ \zeta \left(nf^{2} \ ^{3}H \right) = \frac{\zeta_{nf} \left[3(1/2) + 2(1/2) \right]}{\underbrace{5 \cdot 1}_{M_{L}M_{S}}} = \zeta_{nf} \left/ 2 \right. \end{array}$$
(fill in the steps!)

<u>Example 2</u>. nf^2 in coupled representation

$$\begin{array}{ll} \operatorname{coupled} \left| \begin{array}{c} nf^2 & {}^{3}H_6 & M_J = 6 \end{array} \right\rangle = \left| \left| 3\alpha 2\alpha \right| \right| \\ \operatorname{Land\acute{e}}: & \left\langle nf^2 & {}^{3}H_6 & M_J = 6 \right| \operatorname{H}^{\mathrm{SO}} \left| nf^2 & {}^{3}H_6 & 6 \right\rangle \\ & = \frac{\hbar^2}{2} \left[J(J+1) - L(L+1) - S(S+1) \right] \zeta \left(nf^2 , {}^{3}H \right) \\ & = \hbar^2 5 \zeta \left(nf^2 , {}^{3}H \right) \operatorname{from \ many-e^- \ form} \\ & = \hbar^2 \zeta_{nf} \left[3(1/2) + 2(1/2) \right] & \operatorname{from \ orbital \ form} \\ & \therefore \underbrace{\zeta \left(nf^2 , {}^{3}H \right)}_{\text{what you}} = \underbrace{\zeta_{nf}}{2} \underbrace{\zeta (nf^2, {}^{3}F)}_{\text{what you}} \\ & \overset{\mathrm{What you}}{\operatorname{measure}} \underbrace{\operatorname{What you}}_{\text{want \ to \ know}} \\ & \overset{\mathrm{SF} \ \text{is \ never \ expressed \ as \ a \ single \ Slater} \end{array}$$

Evaluate in either of 2 ways:

a. Obtain explicit linear combination of Slater determinants using ladders and orthogonality or using \mathbf{L}^2 , \mathbf{S}^2 to get $|\mathbf{nf}^2 \ ^3F \ M_L = 3 \ M_S = 1$ [laborious].

determinant for any value of (M_L, M_S)

b. Slater sum rule method [simple].

$$M_{L} = 3, M_{S} = 1 \text{ box: contains only } ||3\alpha0\alpha||, ||2\alpha1\alpha||$$

trace
$$\langle ||3\alpha0\alpha|| \rangle + \langle ||2\alpha1\alpha|| \rangle = E(^{3}H M_{L} = 3, M_{S} = 1) + E(^{3}F M_{L} = 3, M_{S} = 1)$$

$$\overset{1^{\text{st Matrix}}}{\text{Element}} \langle ||3\alpha0\alpha|| \rangle = \langle ||3\alpha0\alpha|| H^{\text{so}}|| ||3\alpha0\alpha|| \rangle = \hbar^{2}\zeta_{nf} \left[\frac{3}{2} + 0\right]$$

35 - 8

second element

second matrix $\langle ||2\alpha 1\alpha|| \rangle = \langle ||2\alpha 1\alpha|| ||\mathbf{H}^{\text{so}}|||2\alpha 1\alpha|| \rangle = \hbar^2 \zeta_{nf} \left| 1 + \frac{1}{2} \right|$ trace of $M_L = 3$, $M_S = 1$ box is $3\hbar^2 \zeta_{nf}$

^{exploit}_{sum rule} $E({}^{3}H M_{L} = 3 M_{S} = 1) = \langle {}^{3}H M_{L} = 3 M_{S} = 1 | H^{SO} | {}^{3}H 31 \rangle = \zeta (nf^{2}, {}^{3}H)\hbar^{2}3 \cdot 1$

but we already showed that $\zeta(nf^2, {}^{3}H) = \zeta_{n_\ell}/2$

$$E\left({}^{3}H M_{L} = 3, M_{S} = 1\right) = \hbar^{2}\zeta_{nf}\left(3/2\right)$$

$$\therefore E\left({}^{3}F M_{L} = 3, M_{S} = 1\right) = 3\hbar^{2}\zeta_{nf} - (3/2)\hbar^{2}\zeta_{nf} = (3/2)\hbar^{2}\zeta_{nf}$$

$$\sup \text{ for the } M_{L} = 3, \qquad = \langle {}^{3}F 31 | \mathbf{H}^{SO} | {}^{3}F 31 \rangle = \zeta(nf^{2}, {}^{3}F)(3 \cdot 1)\hbar^{2}$$

$$\therefore \zeta(nf^{2}, {}^{3}F) = \frac{1}{2}\zeta_{nf}$$

$$\left(\operatorname{actually would find, for $nf^{2}, \zeta(nf^{2}, {}^{3}L) = \frac{1}{2}\zeta_{nf} \text{ for all } L\right)$
$$[not true for all configurations]$$$$

We are not done. There are some $\Delta J = 0$ off-diagonal in L,S matrix elements among the L-S-J terms of the same configuration.

updated August 28, 2020 @ 1:33 PM

35 - 10

set up the J = 6 matrix because it is simplest

$$\begin{vmatrix} {}^{1}I_{6} & 6 \end{pmatrix} = \begin{vmatrix} 3\alpha 3\beta \end{vmatrix}$$
$$\begin{vmatrix} {}^{3}H_{6} & 6 \end{pmatrix} = \begin{vmatrix} 3\alpha 2\alpha \end{vmatrix}$$
$$\begin{pmatrix} {}^{1}I_{6} & 6 \end{vmatrix} \mathbf{H}^{\mathrm{SO}} \begin{vmatrix} {}^{3}H_{6} & 6 \end{pmatrix} = \left\langle \begin{vmatrix} 3\alpha 3\beta \end{vmatrix} \begin{vmatrix} \mathbf{H}^{\mathrm{SO}} \end{vmatrix} 3\alpha 2\alpha \end{vmatrix} \right\rangle$$

Mismatch is in 2nd spin-orbital.

Needs $1/2 \ell_+s_-$ operator to give nonzero spin-orbit matrix element.

$$\begin{aligned} &= \left\langle 3\beta \left| \frac{1}{2} \ell_{+} s_{-} \right| 2\alpha \right\rangle \\ &= \hbar^{2} \zeta_{nf} \frac{1}{2} [3 \cdot 4 - 2 \cdot 3]^{1/2} = \hbar^{2} \zeta_{nf} \left(\frac{3/2}{2} \right)^{1/2} \\ &= \hbar^{2} \zeta_{nf} \frac{1}{2} [3 \cdot 4 - 2 \cdot 3]^{1/2} = \hbar^{2} \zeta_{nf} \left(\frac{3/2}{2} \right)^{1/2} \\ &= \hbar^{3} H_{6} \left(\frac{9}{(3/2)^{1/2}} \frac{(3/2)^{1/2}}{5/2} \right) \\ &\swarrow \\ & \left\langle {}^{3} H_{6} 6 \right| H^{50} \right| {}^{3} H_{6} 6 \right\rangle = \frac{\hbar^{2}}{2} [J(J+1) - L(L+1) - S(S+1)] \zeta(nf^{2}, {}^{3} H) \\ &= \hbar^{2} 5 \zeta(nf^{2}, {}^{3} H) = \hbar^{2} (5/2) \zeta_{nf} \end{aligned}$$

for more complex configurations such as $(n\ell)^{a}(n'\ell')^{b} \rightarrow \zeta_{n\ell}$ and $\zeta_{n'\ell'}$: two ζ parameters needed, 1 for each of the two open subshell orbitals.

But can use the value of $\zeta_{n\ell}$ determined from some other configuration: e.g. ζ_{3d} from $3d^64s^2$ can be used to predict the 3d part of \mathbf{H}^{SO} in $3d^64s4p$. Unexpected *inter-relationships* between superficially unrelated observables. Small number of control parameters. Magic decoder!

Hund's 3rd Rule: lowest energy J level of lowest energy L - S term is J = |L - S|if subshell is less than ½ full, but it is J = L + S if subshell is more than ½ full, and J = S (no spin-orbit splitting) because L = 0 for a half-filled subshell. Sign of ζ (n,L,S) as diagnostic!

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.