Lecture \#5: Continuum Normalization

Last time: Free Wavepacket
encoding of $\mathrm{x}_{0}, \Delta \mathrm{x}, \mathrm{p}_{0}, \Delta \mathrm{p}$

* use of the Gaussian functional form, $\mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right)$, to avoid calculating integrals
* use of stationary phase to encode x_{0} in $|g(k)| e^{i \alpha(k)}$
* use $\mathrm{g}(\mathrm{k})$ because it is automatic to put in $\mathrm{e}^{-i E_{k} t / \hbar}$

For moving and spreading free wavepacket:
$\Delta \mathrm{x}$ is time dependent
$\Delta \mathrm{p}$ is not (because free wavepacket is not subject to any force)
Today: Normalization of eigenfunctions which belong to continuously (as opposed to discretely) variable eigenvalues.

- convenience of ortho-normal basis sets: generalization for continua
- we often talk about "density of states", but in order to do that we need to define what we mean by "state"
- computation of absolute probabilities - cannot depend on how we choose to define "state".

1. Identities for δ-functions.
2. $\psi_{\delta \mathrm{k}}, \psi_{\delta \mathrm{p}}, \Psi_{\delta \mathrm{E}}$ for eigenfunctions that correspond to continuously variable eigenvalues.
3. finite box with countable number of discrete states taken to the limit $\mathrm{L} \rightarrow \infty$. Normalization independent quantity:

$$
P(x, \theta)=\left(\frac{\# \text { states }}{\delta \theta}\right)\left(\frac{\# \text { particles }}{\delta x}\right)
$$

θ is the argument of the delta-function. So if we integrate over a region of θ and x , we have the absolute probability, $\iint \mathrm{d} \theta \mathrm{dx} \mathrm{P}(\mathrm{x}, \theta)$.
4. two examples - "predissociation" rate and smoothly varying spectral density.

In Quantum Mechanics, there are two very different classes of systems.

* SPATIALLY CONFINED: • E is quantized

T: classical period of oscillation
• can normalize to $1=\int_{-\infty}^{\infty} \psi_{\mathrm{E}}^{*} \psi_{\mathrm{E}}^{*} \mathrm{dx}$

* \# of encounters/sec: $\frac{1}{\mathrm{~T}}$
* fraction of time in region of length $\mathrm{L}: \frac{L /|v|}{T} \quad(v$, classical velocity, is dependent on $x)$
* SPATIALLY UNCONFINED: • E continuously variable
- can't count states, so how to compute $\frac{\mathrm{dn}}{\mathrm{dE}}$?
- can ask what is the absolute probability of finding the system between $\mathrm{E}, \mathrm{E}+\mathrm{dE}$ and $\mathrm{x}, \mathrm{x}+\mathrm{dx}$ For confined systems, we can express ortho-normalization in terms of Kronecker- δ

$$
\begin{array}{llll}
\delta_{\mathrm{ij}}=\int_{-\infty}^{\infty} \stackrel{*}{*} \psi_{\mathrm{i}} \psi_{\mathrm{j}} \mathrm{dx} & \delta_{\mathrm{ij}}=0 & \mathrm{i} \neq \mathrm{j} & \text { orthogonal } \\
\delta_{\mathrm{ij}}=1 & \mathrm{i}=\mathrm{j} & \text { normalized }
\end{array}
$$

ψ has dimension of $\mathrm{L}^{-1 / 2}$
δ_{ij} has dimension of pure number. (Kronecker- δ)

For unconfined systems, we are going to ortho-normalize states to Dirac δ functions
In order to do this we need to know better what a δ-function is and what some of its mathematical properties are.
One of several equivalent definitions of a δ-function:

$$
\delta\left(x-x^{\prime}\right)=\delta\left(x, x^{\prime}\right)=\frac{1}{2 \pi} \int e^{-i u\left(x-x^{\prime}\right)} d u
$$

What is it good for?

$$
\begin{array}{ll}
\int \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \psi(\mathrm{x}) \mathrm{dx}=\psi\left(\mathrm{x}^{\prime}\right) . & \text { shifts a function evaluated at } \mathrm{x} \text { to } \\
\delta\left(x, x^{\prime}\right) \text { has dimension of } 1 / \mathrm{x} . & \text { (Dirac- } \delta \text { function) }
\end{array}
$$

Some useful δ-function identities:

We do this so that we will be able to transform between $\delta \mathrm{k}, \delta \mathrm{p}$, and $\delta \mathrm{E}$ (where $\mathrm{E}=\mathrm{f}(\mathrm{k})$) delta-function normalization schemes.

1. $\delta\left(a x, a x^{\prime}\right)=\frac{1}{|a|} \delta\left(x, x^{\prime}\right)$

nonlecture proof of \#1 above

$$
\begin{gathered}
\delta\left(\mathrm{ax}, \mathrm{ax}^{\prime}\right)=\frac{1}{2 \pi} \int \mathrm{e}^{-\mathrm{iu}\left(a \mathrm{ax}-\mathrm{ax}{ }^{\prime}\right)} \mathrm{du} \quad \text { change variables } \\
\mathrm{v}=\mathrm{au} \\
\mathrm{dv}=\mathrm{a} d \mathrm{u} \\
\delta\left(a x, a x^{\prime}\right)=\frac{1}{2 \pi} \frac{1}{a} \int e^{-i v\left(x-x^{\prime}\right)} d v=\frac{1}{a} \delta\left(x, x^{\prime}\right) \\
\text { but, since } \delta\left(a x, a x^{\prime}\right) \equiv \delta\left(a x-a x^{\prime}\right)=\delta\left(a x^{\prime}-a x\right)=\delta\left([-a]\left(x-x^{\prime}\right)\right) \\
\text { (} \delta \text { is an even function }), \delta\left(a \mathrm{ax}, \mathrm{ax}^{\prime}\right)=\frac{1}{|\mathrm{a}|} \delta\left(x, x^{\prime}\right)
\end{gathered}
$$

2. $\delta(g(x))=\underbrace{\sum_{i}}_{\substack{\text { zeros } \\ \text { of } g(x)}}\left|\frac{d g\left(x_{i}\right)}{d x}\right|^{-1} \delta\left(x, x_{i}\right) \quad \begin{gathered}\text { provided that } \\ \frac{\mathrm{dg}\left(\mathrm{x}_{\mathrm{i}}\right)}{\mathrm{dx}} \neq 0\end{gathered}$
expand $g(x)$ in the region near each 0 of $g(x)$,

$$
\text { i.e., } x \text { near } x_{i}
$$

$$
\left.g(x) \cong \frac{d g}{d x}\right|_{x=x_{i}}\left(x-x_{i}\right) .
$$

If there is only 1 zero, then identity $\# 1$ above gives the required result. It is clear that $\delta(\mathrm{g}(\mathrm{x}))$ will only be nonzero when $\mathrm{g}(\mathrm{x})=0$. Otherwise we need to carry out the sum in identity \#2.
$\mathrm{g}(\mathrm{x})=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$ has zeroes at $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.

$$
\begin{aligned}
& \frac{d g}{d x}=\frac{d}{d x}\left[x^{2}-x(a+b)+a b\right]=2 x-(a+b) \\
& \begin{aligned}
\left.\frac{d g}{d x}\right|_{x=a} & =a-\left.b \quad \frac{d g}{d x}\right|_{x=b}=b-a \\
\delta(g(x)) & =\sum_{i}\left|\frac{d g\left(x_{1}\right)}{d x}\right|^{-1} \delta\left(x, x_{i}\right) \quad \text { (zeroes of } g(x) \text {) } \\
& =\left|\frac{1}{a-b}\right|[\delta(x, a)+\delta(x, b)]
\end{aligned}
\end{aligned}
$$

Other examples:

$$
\begin{aligned}
& \delta\left(x^{2}-a^{2}\right)=\frac{1}{2|a|}[\delta(x, a)+\delta(x-a)] \\
& \delta\left(x^{1 / 2}-a^{1 / 2}\right)=2 a^{1 / 2} \delta(x-a) \quad(a>0)
\end{aligned}
$$

See Merzbacher, Quantum Mechanics, $3^{\text {rd }}$ Edition, pages 630-632.

EXAMPLES

A. $\mathrm{g}(\mathrm{x})=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$ This has zeroes at $\mathrm{x}=\mathrm{a}$, and $\mathrm{x}=\mathrm{b}$. You should show that $\delta(g(x))=\frac{1}{|a-b|}[\delta(x, a)+\delta(x, b)]$.
B. $\delta\left(E^{1 / 2}, E^{1 / 2}\right)$
$g(E)=E^{1 / 2}-E^{1 / 2} \quad$ has one zero at $\mathrm{E}=\mathrm{E}^{\prime}$, expand $\mathrm{g}(\mathrm{E})$ about $\mathrm{E}=\mathrm{E}^{\prime}$, thus for E near E^{\prime}

$$
g(E) \pm \frac{1}{2} E^{\prime-1 / 2}\left(E-E^{\prime}\right)
$$

you should show that $\delta\left(E^{1 / 2}, E^{\prime / 2}\right)=2\left|E^{1 / 2}\right| \delta\left(E, E^{\prime}\right)$
This is useful because $\mathrm{k} \propto \mathrm{E}^{1 / 2} \quad \delta\left(E-E^{\prime}\right)=\left(\frac{m}{2 \mathrm{~h}^{2}\left(E^{\prime}-V_{0}\right)}\right)^{1 / 2}\left[\delta\left(k-k^{\prime}\right)+\delta\left(k+k^{\prime}\right)\right]$ for a free particle
or $\quad \delta\left(k_{E}(x)-k_{E^{\prime}}(x)\right)=\left(\frac{2 \mathrm{~h}^{2}}{m}\right)^{1 / 2}\left(E^{\prime}-V(x)\right)^{1 / 2} \delta\left(E-E^{\prime}\right)$

Another property of δ-functions: $\quad \frac{\mathrm{d}}{\mathrm{dx}} \delta\left(x, x^{\prime}\right)$
$\delta\left(x, x^{\prime}\right)$ is an even function:

\therefore expect $\frac{\mathrm{d}}{\mathrm{dx}} \delta\left(x, x^{\prime}\right) \equiv \delta^{\prime}\left(x, x^{\prime}\right)$ to be an odd function:

This is useful because application of $\frac{d}{d x} \delta\left(x, x^{\prime}\right)$ to $f(x)$ is capable of picking out $\frac{d f}{d x}$ evaluated at x^{\prime}.

Non-lecture:

Use definition of derivative to prove that

$$
\begin{gathered}
\int_{-\infty}^{\infty} \delta^{\prime}\left(x, x^{\prime}\right) f(x) d x=-f^{\prime}\left(x^{\prime}\right) \\
\frac{d}{d x} \delta\left(x, x^{\prime}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\left[\delta\left(x+\varepsilon, x^{\prime}\right)-\delta\left(x, x^{\prime}\right)\right]}{\varepsilon} \\
\int \delta\left(x+\varepsilon, x^{\prime}\right) f(x) d x=f\left(x^{\prime}-\varepsilon\right) \\
\int \delta\left(x, x^{\prime}\right) f(x) d x=f\left(x^{\prime}\right)
\end{gathered}
$$

$$
\therefore \int \lim _{\varepsilon \rightarrow 0} \frac{\left[\delta\left(x+\varepsilon, x^{\prime}\right)-\delta\left(x, x^{\prime}\right)\right]}{\varepsilon} f(x) d x=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x^{\prime}-\varepsilon\right)-f\left(x^{\prime}\right)}{\varepsilon}=-f^{\prime}\left(x^{\prime}\right)
$$

There are several useful ways to normalize wavefunctions.

Bound states. Particle is confined in space (with tunneling tails outside the box). Space normalized. 1 particle (mostly) in box.

Box normalized $\quad \psi_{\mathrm{L}, \mathrm{E}_{\mathrm{i}}}(\mathrm{x}) \quad$ (box of length L)

$$
\int_{-\infty}^{\infty} \mathrm{dx} \psi_{\mathrm{L}, \mathrm{E}_{\mathrm{i}}}^{*} \psi_{\mathrm{L}, \mathrm{E}_{\mathrm{j}}}=\delta_{\mathrm{ij}} \quad \text { Kronecker - delta }
$$

OK for bound states, but not continua.

$$
\begin{aligned}
& \text { dimension of } \psi_{\mathrm{L}, \mathrm{E}} \text { is } \mathrm{L}^{-1 / 2} \\
& \text { dimension of } \delta_{\mathrm{ij}} \text { or } \delta_{\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}} \text { is } 1
\end{aligned}
$$

Continua. We need some other form of normalization.

$$
\text { e.g. } \quad \int_{-L / 2}^{L / 2} d x\left(e^{i k x}\right)^{*} e^{i k x}=\int_{-L / 2}^{L / 2} d x e^{-i\left(k-k^{\prime}\right) x}
$$

if $k=k^{\prime}$ we get L
if $\mathrm{k} \neq \mathrm{k}^{\prime}$ we expect to get 0 (in limit $\mathrm{L} \rightarrow \infty$)

So we can normalize to a delta function in E , p , or k .
$\delta \mathbf{E}: \int_{-\infty}^{\infty} d x \psi_{\delta E, E_{i}}^{*} \psi_{\delta E, E_{j}} \equiv \delta\left(E_{i}-E_{j}\right)$
$\delta\left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{j}}\right)$ has the useful δ-function property:

$$
\int d E \delta\left(E-E_{j}\right) \psi_{\delta E, E}=\psi_{\delta E, E_{j}}
$$

This implies that $\delta\left(\mathrm{E}-\mathrm{E}_{\mathrm{j}}\right)$ has the dimension of $1 / \mathrm{E}$ and that $\psi_{\delta \mathrm{E}, \mathrm{E}}$ has dimension of $\mathrm{L}^{-1 / 2} \mathrm{E}^{-1 / 2}$
$\boldsymbol{\delta} \mathbf{p}: \quad \mathrm{p}_{\mathrm{E}}(\mathrm{x})=[2 \mathrm{~m}(\mathrm{E}-\mathrm{V}(\mathrm{x}))]^{1 / 2} \quad P_{E}^{2} / 2 m=E-V(x)$

$$
\int_{-\infty}^{\infty} \mathrm{dx} \psi_{\delta \mathrm{p}, \mathrm{p}_{\mathrm{E}_{\mathrm{i}}}}^{*} \psi_{\delta \mathrm{p}, \mathrm{p}_{\mathrm{E}_{\mathrm{j}}}}=\delta\left(\mathrm{p}_{\mathrm{E}_{\mathrm{i}}}(\mathrm{x})-\mathrm{p}_{\mathrm{E}_{\mathrm{j}}}(\mathrm{x})\right)
$$

$$
\begin{array}{|l|}
\hline \delta\left(p-p^{\prime}\right) \text { has dimension of } 1 / \mathrm{p} \\
\psi_{\delta \mathrm{p}, \mathrm{p}_{\mathrm{E}}} \text { has dimension of } \mathrm{L}^{-1 / 2} p^{-1 / 2} \\
\hline
\end{array}
$$

$\boldsymbol{\delta} \mathbf{k}: \quad k_{E}(x)=\left[\frac{2 m}{\hbar^{2}}(E-V(x))\right]^{1 / 2} \quad \frac{\hbar^{2} k_{E}^{2}}{2 m}=E-V(x)$

$$
\int_{-\infty}^{\infty} \mathrm{dx} \psi_{\delta \mathrm{k}, \mathrm{k}_{\mathrm{E}_{\mathrm{i}}}}^{*} \psi_{\delta \mathrm{k}, \mathrm{k}_{\mathrm{E}_{\mathrm{j}}}}=\delta\left(\mathrm{k}_{\mathrm{E}_{\mathrm{i}}}(\mathrm{x})-\mathrm{k}_{\mathrm{E}_{\mathrm{j}}}(\mathrm{x})\right)
$$

$$
\delta\left(k-k^{\prime}\right) \text { has units of } 1 / \mathrm{k}
$$

$\psi_{\delta \mathrm{k}, \mathrm{k}}$ has units of $\mathrm{L}^{-1 / 2} k^{-1 / 2}$

What are all of these normalization schemes good for?
When you make a measurement on a continuum (unbound) system, you ask

What is the probability of finding a particle between

$$
\begin{aligned}
& \mathbf{x}, \mathbf{x}+\mathbf{d x} \\
& \text { and } \boldsymbol{\theta}, \boldsymbol{\theta}+\mathbf{d} \theta \text { ? } \quad \theta \text { can be } E, p_{\mathrm{E}}(\mathbf{x}), \text { or } \mathbf{k}_{\mathrm{E}}(\mathbf{x})
\end{aligned}
$$

The probability is $\mathrm{P}(\mathrm{x}, \boldsymbol{\theta}) \mathrm{dxd} \boldsymbol{\theta}$
Want $\mathrm{P}(\mathrm{x}, \boldsymbol{\theta})$. Has dimensions $\mathrm{L}^{-1} \boldsymbol{\theta}^{-1} \quad$ (as shown for $\psi_{\delta, \delta E}, \psi_{\delta_{p, p \in}}$, and $\psi_{\delta_{k, k E}}$)

$$
\mathrm{P}(\mathrm{x}, \theta)=\psi_{\delta \theta, \theta}^{*}(\mathrm{x}) \psi_{\delta \theta, \theta}(\mathrm{x})
$$

There is another less abstract way to get this kind of information. "Discretize the continuum" by adding an infinite barrier at $\mathrm{x}=\mathrm{L}$ and taking the limit $\mathrm{L} \rightarrow \infty$. This way we can use box-normalized states, and actually count the states.

The WKB quantization condition (will be derived in Lecture \#7) gives

$$
\frac{\mathrm{dn}}{\mathrm{dE}}=\frac{(2 \mathrm{~m})^{1 / 2}}{\mathrm{~h}} \int_{\mathrm{x}_{-}(\mathrm{E})}^{\mathrm{x}_{+}(\mathrm{E})} \mathrm{dx}(\mathrm{E}-\mathrm{V}(\mathrm{x}))^{-1 / 2}
$$

We have a complicated $\mathrm{V}(\mathrm{x})$ for $\mathrm{x}<\mathrm{x}_{0}$ and constant for $\mathrm{x}>\mathrm{x}_{0}$.
In the region where $V(x)$ is constant at $V\left(x_{0}\right)=V_{0}$.

$$
\int_{\mathrm{x}_{0}}^{\mathrm{L}}[\mathrm{E}-\mathrm{V}(\mathrm{x})]^{-1 / 2} \mathrm{dx}=\left[\mathrm{E}-\mathrm{V}_{0}\right]^{-1 / 2}\left(\mathrm{~L}-\mathrm{x}_{0}\right) \propto \mathrm{L}
$$

and box normalization causes $|\psi|^{2} \propto \frac{1}{\mathrm{~L}}$

2 Schematic Examples

* Bound \rightarrow free transition probabilities
* Constant spectral density across a dissociation or ionization limit.

Bound-Free Transition (predissociation)

At $\mathrm{t}=0$, system is prepared in $\Psi(\mathrm{x}, 0)=\psi_{\text {bound }}(\mathrm{x})$
Fermi's Golden Rule:

$$
\begin{aligned}
& \text { Rate }=\Gamma_{\text {bound } \rightarrow \text { free }}=\frac{2 \pi}{\hbar}\left|\int \psi_{\delta E}^{\text {free* }}(E) \hat{\boldsymbol{H}} \psi_{L, E}^{\text {bound }} d x\right|^{2} \rho_{\delta E}(E) \\
& \left.\rho_{\delta E}=\frac{d n_{\delta E}(E)}{d E} \begin{array}{l}
\text { derive this key quantity by box } \\
\text { repulsive state and taking } \\
\lim _{L \rightarrow \infty}\left(\frac{1}{\mathrm{~L}} \frac{\mathrm{dn}}{\mathrm{~L}} \mathrm{~L}\right. \\
\mathrm{dE}
\end{array}\right)
\end{aligned}
$$

Then compute the $\hat{\mathbf{H}}$ integral using two box normalized functions.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

