5.73

Quiz 35

For p^{3} configuration:
The $M_{L}=0, M_{S}=1 / 2$ block contains $\|1 \alpha 0 \alpha-1 \beta\|,\|\mid 1 \alpha 0 \beta-1 \alpha\|$, and $\|1 \beta 0 \alpha-1 \alpha\|$. For $M_{L}=0, \mathbf{L}^{2}$ may be replaced by $\mathbf{L}_{+} \mathbf{L}_{-}$.
$\mathbf{L}^{2}| | 1 \alpha 0 \alpha-1 \beta \|=\hbar^{2}[2| | 1 \alpha 0 \alpha-1 \beta| |-2| | 1 \alpha 0 \beta-1 \alpha| |]$
$\mathbf{L}^{2}| | 1 \alpha 0 \beta-1 \alpha| |=\hbar^{2}[4| | 1 \alpha 0 \beta-1 \alpha| |-2| | 1 \beta 0 \alpha-1 \alpha| |-2| | 1 \alpha 0 \alpha-1 \beta| |]$
$\mathbf{L}^{2}| | 1 \beta 0 \alpha-1 \alpha \|=\hbar^{2}[2| | 1 \beta 0 \alpha-1 \alpha \|-2| | 1 \alpha 0 \beta-1 \alpha| |]$
A. Set up the \mathbf{L}^{2} matrix for the $\mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=1 / 2$ block.
B. Find the normalized eigenvector of \mathbf{L}^{2} that corresponds to
$\left|{ }^{2} D M_{L}=0, M_{S}=1 / 2\right\rangle$
$\left(\mathbf{L}^{2}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\hbar^{2} 6\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \quad 1=\left[|a|^{2}+|b|^{2}+|c|^{2}\right]^{1 / 2}$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

