Infinite 1-D Lattice II

LAST TIME:

$\mathbf{H}_{2}^{+} \quad$ localization \leftrightarrow tunneling: overlap ! bonding and antibonding orbitals
$\left\{\begin{array}{l}\text { Internuclear distance, } R, \text { vs. } a_{0} n^{2} \\ \text { Bohr radius for } \mathrm{n}^{\text {th }} \text { orbit in } \mathrm{H} \text { atom } \\ \text { energy below top of barrier }\end{array}\right.$

TIGHT-BINDING (Kronig-Penney) Model (see Baym pp. 116-122)
1-D ∞ lattice: 1 state per ion! tunneling only between nearest neighbors! Infinite dimension \mathbf{H} matrix

$$
\mathbf{H}=\left(\begin{array}{cccc}
E_{0} & -A & \ddots & 0 \\
-A & E_{0} & \ddots & 0 \\
0 & \ddots & \ddots & \ddots \\
0 & 0 & \ddots & \ddots
\end{array}\right)
$$

$$
\left\langle v_{q}\right| \mathbf{H}|\varphi\rangle=E\left\langle v_{q} \mid \varphi\right\rangle \quad \text { left multiply both sides by }\left\langle v_{q}\right|
$$

$$
|\varphi\rangle=\sum_{q=-\infty}^{\infty} c_{q}\left|v_{q}\right\rangle \quad \text { Variational wavefunction. Minimize E. }
$$

$0=c_{q}\left(E_{0}-E\right)-A\left(c_{q-1}+c_{q+1}\right) \quad \infty \#$ of coupled linear equations, one for each q

Usually solve for $\left\{c_{q}\right\}$ by setting determinant of coefficients $=0$, and then solve for E. Can' t do this because determinant is of ∞ dimension.

TRICK: expect equal probability of finding e^{-}on each lattice site by analogy to the plane wave $\mathrm{e}^{\mathrm{ikx}}$, where probability density is uniform at all sites along x . Try:

Notice that this is similar to free particle e ${ }^{\mathrm{ikx}}$, which seems rather strange because particle is never really free in the "tight-binding" model.
$\left|c_{q}\right|^{2}=1$
plug trial form for c_{q} into $0=c_{q}\left(E_{0}-E\right)-A\left(c_{q-1}+c_{q+1}\right)$

$$
0=e^{i k q \ell}\left(E_{0}-E\right)-A e^{i k q \ell}\left(e^{-i k \ell}+e^{+i k \ell}\right)
$$

divide through by $e^{i k q \ell}$

$$
0=\left(E_{0}-E\right) k-A 2 \cos k \ell
$$

$$
E(k)=E_{0}-2 A \cos k \ell \quad E \text { vs. } k \text {, we have achieved our goal! }
$$

E varies continuously over an interval of 4 A , where A is the adjacent site interaction strength or the "tunneling integral"

What happens when we look at k outside $-\pi / \ell \leq k<\pi / \ell$, which is called the " 1 st Brillouin Zone"

$$
\begin{array}{ll}
c_{k}=e^{i k q \ell} & \begin{array}{l}
\text { (one additional } \\
\text { allowed wavelength } \\
k^{\prime}=k+\frac{2 \pi}{\ell}
\end{array} \begin{array}{l}
\text { per lattice spacing } \ell \text {) }
\end{array}
\end{array}
$$

$c_{k^{\prime}}=e^{i\left(k+\frac{2 \pi}{\ell}\right) q \ell}=e^{i k q \ell} \underbrace{\underbrace{i 2 \pi q}}_{=1}=e^{i k q \ell}$
wavefunction is unchanged!
So if k goes outside 1st Brillouin Zone, we get the same ψ, so we get the same E.!
Nothing new!
No point in allowing k to vary more widely than $-\pi / \ell \leq k \leq \pi / \ell$.

Today's Lecture:
Unanswered Questions:

1. How many distinct orbitals are there in a band?

N -atom periodic array. Try Periodic Boundary conditions:

$0 \approx \frac{2 \pi}{\ell N} \leq|k| \leq \frac{2 \pi}{\ell}$ in N steps of $\frac{2 \pi}{\ell}$
infinite lattice: $\frac{-\pi}{\ell}<k<\frac{\pi}{\ell}$ contains all of the states generated from one state per atom.
2. What happens at $\mathrm{E}>\mathrm{E}_{0}+2 \mathrm{~A}$?

There is a gap - no states allowed
What is the next higher state of each atom?
Get a free particle (electron) if $\mathrm{E}>$ work function of the solid [energy required to remove e^{-}from solid]
3. But we have orbitals not states! Two spin-orbitals per orbital.

Antisymmetrization.
Lowest band: all spins paired. $\mathrm{G}=0$ (exchange integral). No contribution from G term.
$e^{-}-e^{-}$repulsion raises overall E above that of the single-electronic ground state of each atom
Therefore, the work function of the solid is less than that of the singleatom ionization potential.
4. How many e^{-}does each atom contribute to ψ ?
alkali: $1 \mathrm{e}^{-} \rightarrow$ half full band
alkaline earth: $2 \mathrm{e}^{-} \rightarrow$ full band
5. $\Psi(x, t)$: Motion
phase velocity
group velocity
6. Effective Mass

5.73 Lecture \#38

Now take a closer look at $\phi_{k}(x)$

$$
\begin{aligned}
& \left.\varphi(x)=\left\langle x \mid \varphi_{k}\right\rangle=\left.\sum_{q=-\infty}^{+\infty} e^{i k q \ell} \underset{v_{q}(x)}{\left\langle x_{\wedge}\right.}\right|_{\nu_{N k}}\right\rangle \\
& \mathrm{v}_{q}(x)=\mathrm{V}_{0}(x-q \ell) \quad \begin{array}{l}
\text { shift } \mathrm{x} \text { by }-\mathrm{q} \ell \text { to get } \\
\text { from site } q \text { to site } 0
\end{array} \\
& \varphi_{k}(x)=\sum_{q} e^{i k q \ell} \nu_{0}(x-q \ell)
\end{aligned}
$$

This makes it easy to see the effect of translation of the entire ϕ by ℓ (one lattice spacing)

$$
\varphi_{k}(x+\ell)=\sum_{q} e^{i k q \ell} v_{0}\left(\left\ulcorner^{\wedge}-\ell(\hat{q}-q)^{\wedge}\right)\right.
$$

take factor $e^{i k \ell}$ out of summation:

$$
=e^{i k \ell} \sum_{q=-\infty}^{\infty} e^{i k(q-1) \ell} v_{0}(x-(q-1) \ell)
$$

re-index infinite summation (replace $q-1$ by q everywhere)

This implies that it is possible to write $\phi_{k}(x)$ in a more general form:

$$
\phi_{k}(x)=e^{i k x} u_{k}(x) \quad \text { Bloch wave function }
$$

where $u_{k}(x+\ell)=u_{k}(x) \quad$ perodicity of ℓ
$e^{i k x}$ expresses translational symmetry of plane wave with wavevector k $u_{k}(x)$ expresses translational symmetry of lattice with spacing ℓ

5.73 Lecture \#38

Now consider a localized time-dependent state: "wavepacket"
We are gong to build intuitive insight by comparison to free particle.
Recall free particle:

$$
\Psi(x, t)=(2 \pi)^{-1 / 2} \int d k \underbrace{g(k)}_{\begin{array}{c}
\text { envelope } \\
\text { of } k \\
\text { centered } \\
\text { at } \mathrm{k}_{0}
\end{array}} e^{i[k x-E(k) t / \hbar]}
$$

Group velocity: motion of stationary phase point (we want it to be stationary with respect to k near k_{0})

$$
\begin{aligned}
& 0=\frac{d}{d k}[k x-E t / \hbar]_{k=k_{0}} \\
& x_{\text {center }}(t)=\left.\frac{d E}{d k}\right|_{k_{0}} t / \hbar \quad \text { position } \quad \text { now take } \frac{d}{d t} \\
& v_{\text {center }}=\left.\frac{d E}{d k}\right|_{k_{0}} \frac{1}{\hbar} \quad \text { velocity } \\
& E=\frac{\hbar^{2} k^{2}}{2 m} \quad\left[\frac{1}{2} m \nu^{2}=\frac{p^{2}}{2 m}=\frac{(\hbar k)^{2}}{2 m}\right] \\
& \left.\frac{d E}{d k}\right|_{k_{0}}=\frac{\hbar^{2} k_{0}}{m} \\
& v_{\text {center }}=\uparrow^{v^{G}}=\frac{1}{\hbar}\left[\left.\frac{d E}{d k}\right|_{k_{0}}\right]=\frac{\hbar k_{0}}{m} \\
& \begin{array}{c}
\text { group } \\
\text { velocity }
\end{array} \\
& \text { use this to } \\
& \text { understand } \\
& \text { motion in a } \\
& \text { periodic lattice }
\end{aligned}
$$

5.73 Lecture \#38

Up to here we have been considering a free particle.
For 1-D lattice: the time-dependent wave function is
$|\Psi(t)\rangle=(2 \pi)^{-1 / 2} \int$
maximum amplitude at k_{0}
$d k \underbrace{g(k)} e^{-i E(k) t / \hbar}\left|\varphi_{k}\right\rangle$.

Instead of asking for the location of the stationary phase point, we now ask for the time dependent overlap of $\Psi(\mathrm{t})$ with a specific lattice site, $\left|\nu_{q}\right\rangle$.
$\left\langle v_{q} \mid \Psi(t)\right\rangle=(2 \pi)^{-1 / 2} \int d k g(k) e^{i[k q \ell-E(k) t / \hbar]}$
because $\left|\varphi_{k}\right\rangle=\sum_{q=-\infty}^{\infty} e^{i k q \ell}\left|v_{q}\right\rangle$

$$
\left(\text { same thing as } \phi_{k}(x)=\sum_{q=-\infty}^{\infty} e^{i k q \ell}\left\langle x \mid v_{q}\right\rangle\right)
$$

We can use either state vector or wavefunction picture.
and $\left\langle v_{q}\right|$ picks out only the $e^{i k q \ell}$ term from the sum over q, because $\left\langle v_{\mathrm{p}} \mid v_{q}\right\rangle=\delta_{p, q}$.

Recall that $x=q \ell$, so we can think of $\left\langle v_{\mathrm{q}} \mid \Psi(t)\right\rangle$ as function of x, t.
We want the overlap of $\Psi(\mathrm{t})$ with a particular lattice site, $\left|v_{\mathrm{q}}\right\rangle$.
$\Psi(\mathrm{t})$ moves and sequentially overlaps successive lattice sites.

$$
\left.\left\langle v_{q} \mid \Psi(t)\right\rangle=\stackrel{\downarrow}{\chi}(x, t)=(2 \pi)^{-1 / 2} \int d k g(k) e^{\text {meaningful only for }} \begin{array}{l}
\text { regions of } x \text { near } q \ell
\end{array}\right] \text { phase factor }
$$

Now ask for the stationary phase factor (near $x=0, \pm \ell, \pm 2 \ell, \ldots$) with respect to k :
$0=\frac{d}{d k}[k x-E(k) t / \hbar]$ center of wavepacket,x_{c}
$x_{c}(t)=\left.\frac{d E}{d k}\right|_{k_{0}} t / \hbar$
wavepacket is created at $t=0$ centered at $k=k_{0}$
$v_{G}=\frac{d x_{c}}{d t}=\left.\frac{d E}{d k}\right|_{k_{0}} \frac{1}{\hbar}$
This is the velocity of center of wavepacket. Up to this point, everything is identical for free particle and motion in a periodic lattice.
$E(k)=E_{0}-2 A \cos k \ell$
$\left.\frac{d E}{d k}\right|_{k_{0}}=2 A \ell \sin k_{0} \ell$
$v_{G}=\frac{2 A \ell}{\hbar} \sin k_{0} \ell$
This is quite different from the
free particle plane wave result: $v_{G}=\frac{\hbar k_{0}}{m}$
Now use the $E \leftrightarrow k$ relationship derived for periodic (tight binding) lattice.

Note that, when k_{0} is at the bottom $(\mathrm{k}=0$,
$\mathrm{E}=\mathrm{E}_{0}-2 \mathrm{~A}$) or top ($\mathrm{k}_{0}= \pm \pi / \ell, \mathrm{E}=\mathrm{E}_{0}+$ 2 A) of the band, $\mathrm{v}_{\mathrm{G}}=0$.

Building of new intuition:

* $v_{G} \propto A \quad$ as $|\mathrm{A}|$ (the adjacent site interaction) increases, it becomes easier to take a step and the wavepacket moves faster.
* $v_{G} \propto \ell($ but $\mathrm{A} \downarrow$ as $\ell \uparrow)$
because the tunneling rate decreases as ℓ increases but if A is kept constant as ℓ increases, each step is longer so velocity will be faster
* $v_{G}=0$ when $k_{0}=0$ and when $k_{0}= \pm \pi / \ell$
minimum E of band
Not a surprise because expect $\mathrm{k}=0 \rightarrow \mathrm{v}=0$
maximum E of band
Big surprise.
Use concept of "effective
mass" to rationalize.
e^{-}cannot move if it is too close to either edge of the band

"Effective Mass:"free vs. lattice

$$
v_{G}=\frac{\hbar k_{0}}{m} \quad v_{G}=\frac{2 A \ell \sin k_{0} \ell}{\hbar} \approx \hbar k_{0}\left[\frac{2 A \ell^{2}}{\hbar^{2}}\right]
$$

Compare the terms and identify the reciprocal of the

 coefficient of ` k_{0} as the "effective mass", by analogy with the free particle:$$
m_{\text {eff }}=\frac{\hbar^{2}}{2 A \ell^{2}} \text { at small } k_{0} \ell \quad \begin{aligned}
& * \text { large interaction strength makes } m_{e f f} \text { small } \\
& * \begin{array}{l}
\text { large } \ell \text { makes } m_{e f f} \text { small (large jumps } \\
\text { become possible) }
\end{array}
\end{aligned}
$$

Next: How do we show that $m_{\text {eff }}$ increases to ∞ at the k -edges of the band $(k= \pm \pi / \ell)$?

When k_{0} is near $\pm \pi / \ell$

$$
\begin{gathered}
k_{0}= \pm\left(\frac{\pi}{\ell}-\varepsilon\right) \varepsilon \text { is small } \\
\sin k_{0} \ell=\sin \left[\pm\left(\frac{\pi}{\ell}-\varepsilon\right) \ell\right] \approx \pm \varepsilon \ell \\
v_{G}=\hbar k_{0}\left[\frac{2 A \ell}{\hbar^{2} k_{0}} \sin k_{0} \ell\right] \approx \pm \hbar k_{0}\left[{\underset{\sim}{c}}_{\substack{2 \\
\hbar^{2} k_{0 \sim n}}}^{2 A / m_{e f f}}\right] \quad[v=p / m] \\
m_{e f f}=\frac{\hbar^{2} k_{0}}{2 A \ell^{2} \varepsilon} \longrightarrow \infty \text { as } \varepsilon \rightarrow 0
\end{gathered}
$$

This means that at the energy of the top of a filled band : no e^{-}transport is possible!

Alternative approach to $\mathrm{m}_{\text {eff }}$:
$E=p^{2} / 2 m \quad$ for free particle
$\left(\frac{\mathrm{d}^{2} E}{d p^{2}}\right)^{-1}=m$ use this to define $m_{\text {eff }}$
$\mathrm{E}(\mathrm{k})=\mathrm{E}_{0}-2 A \cos k \ell$
$E(p)=E_{0}-2 A \cos (p \ell / \hbar)$
$\frac{d^{2} E}{d p^{2}}=\left(2 A \ell^{2} / \hbar^{2}\right) \cos k \ell \quad \cos k \ell=1-\frac{1}{2}(k \ell)^{2}+\ldots$
thus, at small $\mathrm{k} \ell \quad m_{e f f}=\frac{\hbar^{2}}{2 A \ell^{2}}$

We have an intuitive picture for the time-evolution of a localized wavepacket. The concept of effective mass guides our intuition.

$$
\begin{aligned}
& v_{G}=\frac{\hbar k}{m_{\mathrm{eff}}} \\
& m_{\mathrm{eff}}=\frac{\hbar^{2}}{2 A \ell^{2}} \quad \text { at bottom of band } \\
& m_{\mathrm{eff}}=\frac{\hbar^{2} k_{0}}{2 A \ell^{2} \varepsilon} \rightarrow \infty \text { near top of band (full band) }
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

