5.73

Quiz 24
\square
Pauli Matrices: $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \boldsymbol{\sigma}_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$\boldsymbol{\sigma}_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \boldsymbol{\sigma}_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
A. What are the eigenvalues of $\boldsymbol{\sigma}_{x}, \boldsymbol{\sigma}_{x}$, and $\boldsymbol{\sigma}_{z}$?.
B. Let $M=\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)$. Find the trace of
(i) MI
(i) $\mathbf{M I}$
(ii) $\mathbf{M} \boldsymbol{\sigma}_{x}$
(iii) $\mathbf{M} \boldsymbol{\sigma}_{y}$
(iv) $\mathbf{M} \boldsymbol{\sigma}_{z}$
C. Let $\boldsymbol{\rho}(t)=\frac{1}{5} \mathbf{M}$. Consider the vector

$$
\begin{aligned}
& a_{x}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{x}\right) \\
& a_{y}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{y}\right) \\
& a_{z}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{z}\right) .
\end{aligned}
$$

Where is the vector a pointing at $\mathrm{t}=0$ and at $\mathrm{t}=\pi / 2 \omega$?

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

