5.73

Quiz 9

1.

Grid Points	$X_{i}, X_{i+1}=X_{i}+h(h$ is step size, not Planck's constant $)$
	$\psi \equiv \psi\left(x_{i}\right)$
	$U(x)$ is potential
	$\left[\frac{d^{2}}{d x^{2}}-\frac{2 m}{\hbar^{2}}(U(x)-E)\right] \psi=0$ is Schrödinger Equation
	$V(x)=C[U(x)-E]$
	$C=\frac{2 m}{\hbar^{2}}$
	$V_{i}=V\left(X_{i}\right)$

A. What is the grid definition of $\left.\frac{d \psi}{d x}\right|_{x=x_{i}}$?
B. What quantity has the grid definition $h^{-2}\left[\psi_{i+i}-2 \psi_{i}+\psi_{i-1}\right]$?
C. Use $\left\{\psi_{i}\right\}, h, V_{i}$ to write the grid form of the Schrödinger Equation.
D. Suppose you are searching for values of E which satisfy a nonlinear equation

$$
F(E)=0 .
$$

You know that $\quad F\left(E_{I}\right)=a$

$$
\begin{gathered}
\text { and } \\
F\left(E_{1}+\delta\right)=a+\gamma .
\end{gathered}
$$

If you expand $F(E)$ about E_{1}

$$
F(E)=F\left(E_{1}\right)+\left.\frac{d F}{d E}\right|_{E_{1}}\left(E-E_{1}\right)
$$

then what value of E is your first iterative solution of $F\left(E_{i}\right)=0$? To solve for E_{i}, you need $\left.\frac{d F}{d E}\right|_{E_{1}}$, which you obtain from the definition of the derivative, and $F\left(E_{i}\right)=0=F\left(E_{1}\right)+\left.\frac{d F}{d E}\right|_{E_{1}}\left(E_{i}-E_{1}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

