Density Matrices II

Read CTDL, pages 643-652.
Last time: $\quad \psi,| \rangle, \rho=| \rangle\langle |$

* coherent superposition vs. statistical mixture
* $\boldsymbol{\rho}$ can have non-zero off-diagonal elements if it is a statistical mixture, that includes one coherent superposition state.
* populations along diagonal, coherences off-diagonal
$\langle\mathbf{A}\rangle=\operatorname{Trace}(\rho \mathbf{A})=\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho})$
Today: Quantum Beats
prepared state ρ
detection as projection operator \mathbf{D}
What part of \mathbf{D} samples a specific off-diagonal element of $\boldsymbol{\rho}$?
Optimize the magnitude of quantum beats
"[partial traces]"
* system consisting of 2 parts - e.g. coupled oscillators
* motion in state-space vs. motion in coordinate space.
* "entanglement"

Example: Quantum Beats

Preparation, evolution, detection
magically prepare some coherent superposition state $\Psi(\mathrm{t})$

$$
\begin{aligned}
& \Psi(t)=N \sum_{n} \underbrace{a_{n} \Psi_{n} e^{-i E_{n} t / \hbar}}_{\begin{array}{l}
\text { Several eigenstates of } \mathbf{H} . \\
\text { Evolve freely without } \\
\text { any time-dependent } \\
\text { intervention }
\end{array}} \\
& \rho(t)=|\Psi(t)\rangle\langle\Psi(t)|
\end{aligned}
$$

$\mathrm{N}=\left[\sum_{\mathrm{n}}\left|\mathrm{a}_{\mathrm{n}}\right|^{2}\right]^{-1 / 2}$
normalization

Case (1): Detection: only one of the eigenstates, ψ_{1}, in the superposition is capable of giving fluorescence that our detector can "see".
Thus $\mathbf{D}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left(\begin{array}{ccc}1 & 0 & \cdots \\ 0 & 0 & 0 \\ \vdots & 0 & 0\end{array}\right)$
a projection operator (designed to project out only $\left|\psi_{1}\right\rangle$ part of state vector or ρ_{11} part of $\boldsymbol{\rho}$.

$$
\left(\left|a_{1}\right|^{2} \quad a_{1} a_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right.
$$

$$
\rho=\left.N^{2}|\quad| a_{2}\right|^{2}
$$

$$
\left|a_{3}\right|^{2}
$$

$$
\begin{aligned}
& \rho_{12}=\langle 1 \mid \Psi\rangle\langle\Psi \mid 2\rangle \\
& \rho_{12}=N^{2} a_{1} e^{-i E_{1} t / \hbar} a_{2}^{*} e^{+i E_{2} t / \hbar}
\end{aligned}
$$

$$
\langle\mathbf{D}\rangle_{\mathrm{t}}=\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=N^{2} \operatorname{Trace}
$$

$$
\left|\mathrm{a}_{1}\right|^{2} \quad \mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-i \omega_{12} \mathrm{t}} \quad \text { stuff } \quad \ldots
$$

$$
\left.\begin{array}{llll}
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

$$
=\mathbf{N}^{2}\left|\mathrm{a}_{1}\right|^{2}
$$

case (2): a particular linear combination of eigenstates is bright: the initial state $2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right)$ has $\langle\mathbf{D}\rangle=1$.

$$
\begin{aligned}
\mathbf{D} & =\frac{1}{2}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle\right)\left(\left\langle\psi_{1}\right|+\left\langle\psi_{2}\right|\right) \\
& =\frac{1}{2}\left[\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|\right]
\end{aligned}
$$

a projection operator.
How much of the original state is present in the evolved state?
$=\frac{1}{2}\left[\left(\begin{array}{cccc}1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{cccc}0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{cccc}0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{cccc}0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0\end{array}\right)\right]$
$\mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}1 & 1 & 0 & \cdots \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0\end{array}\right)$
[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\left.\mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\right]$
$\operatorname{Trace}(\mathbf{D} \rho)=\frac{1}{2} \mathrm{~N}^{2}$ Trace \quad why do we need to look at only the 1,2 block of $\boldsymbol{\rho}$?
$(\mathbf{D} \boldsymbol{\rho})_{11}=\frac{1}{2} N^{2}\left[\left|a_{1}\right|^{2}+a_{1}^{*} a_{2} e^{+i\left(E_{1}-E_{2}\right) t / \hbar}\right]$
$(\mathbf{D} \boldsymbol{\rho})_{22}=\frac{1}{2} N^{2}\left[\left|a_{2}\right|^{2}+a_{1} a_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right]$
$\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} N^{2}\left[\left|a_{1}\right|^{2}+\left|a_{2}\right|_{\uparrow}^{2}+2 \operatorname{Re}\left[a_{1}^{*} a_{2} e_{\text {peat note at } \omega_{12}}^{+i \omega_{12} t}\right]\right]_{\text {beat }}$
[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\operatorname{Tr}(\mathbf{D} \rho)$ would be the same except for $-2 \operatorname{Re}[$]]

If $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2}\left(\right.$ and a_{1}, a_{2} real $), \operatorname{Trace}(\mathbf{D} \rho)=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}\left[1 \pm \cos \omega_{12} t\right] \quad\left(\mathrm{N}^{2}=1 / 2\right)$
QUANTUM BEAT! 100\% modulation!
Either $2 \mathrm{~N}^{2}\left|\mathrm{a}_{1}\right|^{2}$ at $\mathrm{t}=0(+$ sign $)$ or 0 at $\mathrm{t}=0(-$ sign $)$
if $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2}$ and a_{1}, a_{2} real
$\langle\mathbf{D}\rangle_{t} 2|\mathbf{N}|^{2}\left|a_{1}\right|^{2}$

bright state $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$
$\mathbf{D}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

Usually $\left|a_{\mathbf{1}}\right|_{t}^{\mathbf{2}}=e^{-t / \tau}$ - exponential decay: we have sinusoidal beats superimposed on exponential decay
what happens if $\left|\mathrm{a}_{1}\right|^{2} \neq\left|a_{2}\right|^{2}$?

Terms in Trace ($\mathbf{D} \boldsymbol{\rho}$)
maximum beat amplitude
occurs when $\left|a_{\mathbf{1}}\right|^{\mathbf{2}}=\left|a_{\mathbf{2}}\right|^{\mathbf{2}}$
revised August 13, 2020

So we see that the same $\Psi(\mathrm{x}, \mathrm{t})$ or $\boldsymbol{\rho}(\mathrm{t})$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in $\boldsymbol{\rho}$) which oscillate at ω_{ij}. THIS IS THE REASON WHY WE CAN SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of ρ_{nm} and $\langle\mathbf{A}\rangle$
Start with the time-dependent Schrödinger equation:

$$
\mathbf{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t}\left\{\begin{array}{l}
\mathbf{H}|\Psi\rangle=i \hbar \frac{\partial}{\partial t}|\Psi\rangle \\
\langle\mathbf{H}| H=-i \hbar \frac{\partial}{\partial t}\langle\Psi|
\end{array}\right.
$$

for time-independent \mathbf{H} we know $\Psi(t)=\sum_{n} a_{n} \psi_{n} e^{-i E_{n} t / \hbar}$

1. $\rho(\mathrm{t})$

$$
\begin{aligned}
& \rho(t)=|\Psi(t)\rangle\langle\Psi(t)| \\
& \rho_{n n}(t)=\langle n \mid \Psi(t)\rangle\langle\Psi(t) \mid n\rangle=\left|a_{n}\right|^{2} \quad \\
& \quad \begin{array}{l}
\text { a time independent } \\
\text { "population" in state }
\end{array}
\end{aligned}
$$

$$
n .
$$

$$
\rho_{n m}(t)=a_{n} a_{m}^{*} e^{-i\left(E_{n}-E_{m}\right) t / \hbar}=a_{n} a_{m}^{*} e^{-i \omega_{n m} t}
$$

2. $\langle\mathbf{A}\rangle_{\mathrm{t}}$
a "coherence" which oscillates at ω_{nm} (eigenstate energy differences $/ \hbar$)

Recall $i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi$
$\frac{\partial}{\partial t}\langle\mathbf{A}\rangle=\left[\frac{\partial}{\partial t}\langle\Psi|\right] \mathbf{A}|\Psi\rangle+\langle\Psi| \frac{\partial \mathbf{A}}{\partial t}|\Psi\rangle+\langle\Psi| \mathbf{A}\left[\frac{\partial}{\partial t}|\Psi\rangle\right]$

$$
=\frac{-1}{i \hbar}[\langle\Psi| \mathbf{H}] \mathbf{A}|\Psi\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle+\langle\Psi| \mathbf{A}\left[\frac{1}{i \hbar} \mathbf{H}|\Psi\rangle\right]
$$

$$
=\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle>\begin{gathered}
\text { Heisenberg Equation } \\
\text { of Motion }
\end{gathered}
$$

This is a scalar equation, not a matrix equation. It tells us about the motion of the "center" of a wavepacket. Note that nothing has been assumed about the timedependence of \mathbf{H}. Motion of \mathbf{A}. Example of one observable quantity.

Nonlecture

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial t}[|\Psi\rangle\langle\Psi|] & =\left[\frac{\partial}{\partial t}|\Psi\rangle\right]\langle\Psi|+|\Psi\rangle\left[\frac{\partial}{\partial t}\langle\Psi|\right] \\
& =\left[\frac{1}{i \hbar} \mathbf{H}|\Psi\rangle\right]\langle\Psi|+|\Psi\rangle\left[\frac{-1}{i \hbar}\langle\Psi| \mathbf{H}\right] \\
& =\frac{1}{i \hbar}[\mathbf{H} \rho-\rho \mathbf{H}] \\
i \hbar \frac{\partial \rho}{\partial t} & =[\mathbf{H}, \boldsymbol{\rho}]
\end{aligned}
$$

no requirement that \mathbf{H} be independent of t .
But if \mathbf{H} is independent of t , then take matrix elements of both sides of equation.

$$
\begin{aligned}
i \hbar \dot{\rho}_{j k} & =\langle j| \mathbf{H} \boldsymbol{\rho}-\boldsymbol{\rho} \mathbf{H}|k\rangle \\
& =E_{j} \rho_{j k}-\rho_{j k} E_{k}=\left(E_{j}-E_{k}\right) \rho_{j k} \\
\dot{\rho}_{j k} & =-\frac{i}{\hbar}\left(E_{j}-E_{k}\right) \rho_{j k}
\end{aligned}
$$

You already knew this, but not so elegantly.
$\rho_{(}(t)=e^{-\frac{i}{\hbar}\left(E_{j}-E_{k}\right) t}$
$\rho_{j k}(t)=e^{\hbar} \rho$

$\rho_{j k}(0)$
Time evolution of all coherences in the absence of external manipulation!
External manipulation can cause coupling between differential equations.

If \mathbf{A} commutes with \mathbf{H} (regardless of whether \mathbf{H} is time-dependent), there is no dynamics as far as observable \mathbf{A} is concerned. However, if \mathbf{A} does not commute with \mathbf{H}, there can be dynamics of $\langle\mathbf{A}\rangle$ even if both \mathbf{A} and \mathbf{H} are time-independent.
Similarly can derive $i \hbar \frac{\partial \rho}{\partial t}=[\mathbf{H}(t), \rho]$ evolution of ρ under $\mathbf{H}(\mathrm{t})$. This is a matrix equation. It specifies the time dependence of each element of $\boldsymbol{\rho}$.

Often we have coupled differential equations where ρ_{ij} is related to $\rho_{\mathrm{ii}}, \rho_{\mathrm{ij}}$ and perhaps other things too.
Summarize

$\left.\begin{array}{ll}\text { time evolution of } \boldsymbol{\rho}: & \mathbf{H} \\ \text { observable quantity : } & \mathbf{A}\end{array}\right\}$	the form of matrices which can be easily read (or designed!).

NMR pulse gymnastics
statistical mixture states - use the same machinery BUT add the independent ρ_{k} matrices with weights p_{k} that correspond to their fractional populations. [Populations have no phase.]
$\boldsymbol{\rho}$ is Hermitian so $\boldsymbol{\rho}$ can be diagonalized by $\mathbf{T}^{\dagger} \boldsymbol{\rho} \mathbf{T}=\tilde{\boldsymbol{\rho}}$. However, if $\boldsymbol{\rho}$ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\tilde{\rho}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize \mathbf{H}, thereby reintroducing time dependences.

Systems consisting of 2 parts: method of partial traces

e.g. coupled harmonic oscillators
direct product representation

$$
\binom{\text { recall anharmonically coupled oscillators, }}{k_{122} q_{1} q_{2}^{2}, \psi\left(q_{1}, q_{2}\right)=\psi_{v_{1}}\left(q_{1}\right) \psi_{v_{2}}\left(q_{2}\right)}
$$

$\psi\left(x_{1}, x_{2}\right)=\psi_{1, n_{1}}\left(x_{1}\right) \psi_{2, n_{2}}\left(x_{2}\right) \quad\left|n_{1}, n_{2}\right\rangle$
$\rho=\boldsymbol{\rho}^{(1)} \otimes \rho^{(2)}$
ρ has 4 indices

$$
\rho_{n_{1} n_{2} ; n_{1}^{\prime} n_{2}^{\prime}}=\left\langle n_{1}\right|\left\langle n_{2} \mid \psi\right\rangle\left\langle\psi \mid n_{2}^{\prime}\right\rangle\left|n_{1}^{\prime}\right\rangle
$$

It is still a square matrix with $\left[\left(n_{1 \max }+1\right)\left(n_{2 \max }+1\right)\right]^{2}$ elements.
We might want to measure the expectation value of an operator that operates on both systems 1 and 2: $\mathbf{A}(1,2)$
$\langle\mathbf{A}\rangle=\operatorname{Trace}(\rho \mathbf{A})$

$$
=\sum_{\mathrm{n}_{1}, \mathrm{n}_{2}}(\rho \mathbf{A})_{\mathrm{n}_{1} \mathrm{n}_{2} ; \mathrm{n}_{1} \mathrm{n}_{2}}
$$

Alternatively, we might want to measure the expectation value of an operator that operates only on system 1: call it $\mathbf{B}(1)$.
To use the Trace $(\rho \mathbf{B})$ method, need the concept of partial traces and need to formally extend \mathbf{B} so that it acts as a dummy operator on system 2 .

$$
\tilde{\mathrm{B}}(1)=\mathrm{B}(1) \otimes \underbrace{}_{\text {diagonal with respect to } \mathrm{n}_{2}}(2)
$$

Several types of initial preparation are possible:

1. pure state of $1 \otimes 2$ (a "tensor product" state)
2. statistical mixture in 1 , pure state in 2.
3. statistical mixture in both.

Entanglement! Handout from 10/11/02. Science 298, p369 (2002).
Several types of observation are possible:

1. separate observation of subsystem 1 or 2
2. simultaneous measurement of both systems

$$
\mathbf{H}=\left(\begin{array}{ccc}
0 & 5 & 2 \\
5 & 2 & 0.5 \\
2 & 0.5 & 20
\end{array}\right)
$$

This \mathbf{H} has a 2×2 quasi-degenerate block and both members of this block interact weakly with a non-quasi-degenerate remote state.

$$
\begin{aligned}
& \mathbf{H}^{(0)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 20
\end{array}\right) \\
& \mathbf{H}^{(1)}=\left(\begin{array}{ccc}
0 & 5 & 2 \\
5 & 0 & 0.5 \\
2 & 0.5 & 0
\end{array}\right) \\
& \mathbf{H}^{(2)}=\left(\begin{array}{ccc}
\frac{2^{2}}{-20} & \frac{(2)(0.5)}{\frac{0+2}{2}-20} & 0 \\
-\frac{1}{19} & \frac{0.5^{2}}{-18} & 0 \\
0 & 0 & \left(\frac{2^{2}}{20}+\frac{0.5^{2}}{18}\right)
\end{array}\right) \\
& \text { Van Vleck } \\
& H_{n n^{\prime}}^{(2)}=\sum_{\text {in-block }}^{k} \frac{H_{n k}^{(1)} H_{k n^{\prime}}^{(1)}}{E_{n}^{(0)}+E_{n^{\prime}}^{(0)}} \frac{E_{k}^{(0)}}{2}
\end{aligned}
$$

CTDL use this definition of $\tilde{\mathbf{B}}(1)$ (page 306) to prove that

$$
\langle\tilde{\mathbf{B}}(1)\rangle=\operatorname{Tr}(\boldsymbol{\rho}(1) \mathbf{B}(1)) \quad \begin{gathered}
\text { calculated as if } \\
\text { system 1 were } \\
\text { isolated from } \\
\text { system 2 }
\end{gathered}
$$

for coupled $\mathrm{H}-\mathrm{O}$ system
operator of type (1,2) $\quad \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} \quad$ (a correlated property of two parts of the system)
type (1) $\quad \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}$
or type (2) $\quad \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}$
or type $(1+2) \quad\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)$
See Chem. Phys. Lett. 320, 553 (2000).

Suppose $t=0$ wavepacket is located at turning point of $\mathrm{v}_{2}=5$ in oscillator \#2 and at $\mathrm{x}_{1}=0$ for oscillator \#1

Discuss inital preparation that gives
$\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}=0\right)=\sum_{\mathrm{n}_{2}=0}^{\infty} \mathrm{a}_{\mathrm{n}_{2}}\left|0, \mathrm{n}_{2}\right\rangle^{(0)}$ dynamics within a polyad and between polyads. Diagnostics in state and in configuration space.
suppose we have $\omega_{1}=2 \omega_{2} \quad P=2 n_{1}+n_{2}$ polyads .
and only the $|0, \mathrm{P}\rangle^{(0)}$ state is "bright" (i.e. excitation is initially
in oscillator \#2)

```
eigenvectors of H(1,2)
expressed in H-O Basis
set
```

need to write $|0, \mathrm{P}\rangle^{(0)}$ as $\sum_{n=0}^{P / 2} \mathrm{~b}_{n}|n, P-2 n\rangle$

(\mathbf{H}^{P} is polyad Hamiltonian)

The initial state is a coherent superposition of several polyads. Motion occurs in both coordinate space and in state space. Each kind of motion is sampled by a different class of diagnostic.
so that we can use $E_{P, n}$ in $e^{-i E_{P, n} t / \hbar}$
to express $\Psi\left(x_{1}, x_{2}, t\right)$

get motion of pieces of state vector within each Polyad P.
Could want expectation values of quantities like $N_{1}, N_{2}, P, x_{1}, x_{1} x_{2}^{2}$:
$\left.\begin{array}{l}\mathbf{N}_{1}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} \\ \mathbf{N}_{2}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\end{array}\right\}$ state space
$2 \mathbf{N}_{1}(\mathrm{t})+\mathbf{N}_{2}(\mathrm{t})=\mathbf{P}$
coordinate space $\left\{\begin{array}{l}\mathbf{x}_{1}=2^{-1 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right) \\ \mathbf{x}_{1} \mathbf{x}_{2}^{2}=2^{-3 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)\left(\mathbf{a}_{2}+\mathbf{a}_{2}^{\dagger}\right)^{2}\end{array}\right.$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

