Density Matrices II

Read CTDL, pages 643-652.

Last time: Ψ , $| \rangle$, $\rho = | \rangle \langle |$ * coherent superposition vs. statistical mixture * ρ can have non-zero off-diagonal elements if it is a statistical mixture, that includes one coherent superposition state. * populations along diagonal, coherences off-diagonal $\langle A \rangle = \text{Trace}(\rho A) = \text{Trace}(A \rho)$

Today: Quantum Beats prepared state ρ detection as projection operator **D**

> What part of **D** samples a specific off-diagonal element of ρ ? Optimize the magnitude of quantum beats

"[partial traces]"

* system consisting of 2 parts — e.g. coupled oscillators

* motion in state-space vs. motion in coordinate space.

* "entanglement"

The material on pages 20–2, –3, –5, and –7 is an exact duplication of pages 19–5, –6, –7 and –8.

Example: Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state $\Psi(t)$

$$\Psi(t) = N \sum_{n} \underbrace{a_n \psi_n e^{-iE_n t/\hbar}}_{\substack{\text{Several eigenstates of H} \\ \text{Evolve freely without} \\ \text{any time-dependent}}}_{\text{intervention}} \Phi(t) = |\Psi(t)\rangle \langle \Psi(t)|$$

$$N = \left[\sum_{n} |a_{n}|^{2}\right]^{-1/2}$$

normalization

Case (1): Detection: only one of the eigenstates, ψ_1 , in the superposition is capable of giving fluorescence that our detector can "see".

Thus
$$\mathbf{D} = |\Psi_1\rangle \langle \Psi_1| = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & 0 & 0 \\ \vdots & 0 & 0 \end{pmatrix}$$
 a projection operator
(designed to project out only $|\Psi_1\rangle$)
part of state vector or ρ_{11} part of $\boldsymbol{\rho}$.
$$\boldsymbol{\rho} = N^2 \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-i(E_1 - E_2)t/\hbar} & \cdots \\ |a_2|^2 & \ddots \\ |a_3|^2 & \ddots \\ \rho_{12} = N^2 a_1 e^{-iE_1t/\hbar} a_2^* e^{+iE_2t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \rho_{12} = N^2 a_1 e^{-iE_1t/\hbar} a_2^* e^{+iE_2t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \langle \mathbf{D} \rangle_t = \operatorname{Trace}(\mathbf{D}\boldsymbol{\rho}) = N^2 \operatorname{Trace} \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-i\omega_{12}t} & \operatorname{stuff} & \cdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \\ = N^2 |a_1|^2 & \text{no time dependence!} \end{cases}$$

If

case (2): a particular linear combination of eigenstates is bright: the initial state $2^{-1/2}(\psi_1 + \psi_2)$ has $\langle \mathbf{D} \rangle = 1$.

So we see that the same $\Psi(x,t)$ or $\rho(t)$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in ρ) which oscillate at ω_{ij} . THIS IS THE REASON WHY WE CAN SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of ρ_{nm} and $\langle A \rangle$

Start with the time-dependent Schrödinger equation:

$$\mathbf{H}\Psi = i\hbar\frac{\partial\Psi}{\partial t} \quad \begin{cases} \mathbf{H}|\Psi\rangle = i\hbar\frac{\partial}{\partial t}|\Psi\rangle \\ \langle\mathbf{H}|H = -i\hbar\frac{\partial}{\partial t}\langle\Psi| \end{cases}$$

for time-independent **H** we know $\Psi(t) = \sum_{n} a_n \psi_n e^{-iE_n t/\hbar}$

1. **p**(t)

$$\boldsymbol{\rho}(t) = |\Psi(t)\rangle \langle \Psi(t)|$$
$$\boldsymbol{\rho}_{nn}(t) = \langle n|\Psi(t)\rangle \langle \Psi(t)|n\rangle = |a_n|^2$$

a time independent "**population**" in state *n*.

$$\rho_{nm}(t) = a_n a_m^* e^{-i(E_n - E_m)t/\hbar} = a_n a_m^* e^{-i\omega_{nm}t}$$

a "coherence" which oscillates at ω_{nm} (eigenstate energy differences $/\hbar$)

2. $\langle \mathbf{A} \rangle_{t}$

Recall
$$i\hbar \frac{\partial \Psi}{\partial t} = \mathbf{H}\Psi$$

 $\frac{\partial}{\partial t} \langle \mathbf{A} \rangle = \left[\frac{\partial}{\partial t} \langle \Psi | \right] \mathbf{A} | \Psi \rangle + \left\langle \Psi | \frac{\partial \mathbf{A}}{\partial t} | \Psi \rangle + \left\langle \Psi | \mathbf{A} \left[\frac{\partial}{\partial t} | \Psi \rangle \right] \right]$
 $= \frac{-1}{i\hbar} \left[\langle \Psi | \mathbf{H}] \mathbf{A} | \Psi \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle + \left\langle \Psi | \mathbf{A} \left[\frac{1}{i\hbar} \mathbf{H} | \Psi \rangle \right] \right]$
 $= \frac{i}{\hbar} \langle [\mathbf{H}, \mathbf{A}] \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle$
Heisenberg Equation of Motion

This is a scalar equation, not a matrix equation. It tells us about the motion of the "center" of a wavepacket. Note that nothing has been assumed about the timedependence of \mathbf{H} . Motion of \mathbf{A} . Example of one observable quantity.

<u>Nonlecture</u>

$$\begin{aligned} \frac{\partial \mathbf{\rho}}{\partial t} &= \frac{\partial}{\partial t} \Big[|\Psi\rangle \langle \Psi| \Big] = \left[\frac{\partial}{\partial t} |\Psi\rangle \Big] \langle \Psi| + |\Psi\rangle \Big[\frac{\partial}{\partial t} \langle \Psi| \Big] \\ &= \left[\frac{1}{i\hbar} \mathbf{H} |\Psi\rangle \Big] \langle \Psi| + |\Psi\rangle \Big[\frac{-1}{i\hbar} \langle \Psi| \mathbf{H} \Big] \\ &= \frac{1}{i\hbar} \Big[\mathbf{H} \mathbf{\rho} - \mathbf{\rho} \mathbf{H} \Big] \\ &i\hbar \frac{\partial \mathbf{\rho}}{\partial t} = \Big[\mathbf{H}, \mathbf{\rho} \Big] \end{aligned}$$

no requirement that **H** be independent of t.

But if **H** is independent of t, then take matrix elements of both sides of equation.

$$i\hbar\dot{\rho}_{jk} = \langle j | \mathbf{H}\boldsymbol{\rho} - \boldsymbol{\rho}\mathbf{H} | k \rangle$$
$$= E_{j}\rho_{jk} - \rho_{jk}E_{k} = (E_{j} - E_{k})\rho_{jk}$$
$$\dot{\rho}_{jk} = -\frac{i}{\hbar}(E_{j} - E_{k})\rho_{jk}$$

You already knew this, but not so elegantly.

$$\rho_{jk}(t) = e^{-\frac{i}{\hbar} \left(E_j - E_k\right)t} \rho_{jk}(0)$$

Time evolution of all coherences in the absence of external manipulation!

External manipulation can cause coupling between differential equations.

If A commutes with H (regardless of whether H is time-dependent), there is no dynamics as far as observable A is concerned. However, if A does not commute with H, there can be dynamics of $\langle A \rangle$ even if both A and H are time-independent.

NMR pulse gymnastics

<u>statistical mixture states</u> – use the same machinery BUT add the independent ρ_k matrices with weights p_k that correspond to their fractional populations. [Populations have no phase.]

 ρ is Hermitian so ρ can be diagonalized by $\mathbf{T}^{\dagger}\rho\mathbf{T} = \tilde{\rho}$. However, if ρ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\tilde{\rho}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize \mathbf{H} , thereby reintroducing time dependences.

Systems consisting of 2 parts: method of partial traces

e.g. coupled harmonic oscillators
direct product representation

$$\begin{pmatrix}
\text{recall anharmonically coupled oscillators,} \\
k_{122}q_1q_2^2, \psi(q_1,q_2) = \psi_{v_1}(q_1)\psi_{v_2}(q_2)
\end{pmatrix}$$

- $\Psi(x_1, x_2) = \Psi_{1, n_1}(x_1) \Psi_{2, n_2}(x_2) \qquad |n_1, n_2\rangle$ $\boldsymbol{\rho} = \boldsymbol{\rho}^{(1)} \otimes \boldsymbol{\rho}^{(2)}$
- ρ has 4 indices

$$\rho_{n_1n_2;n_1'n_2'} = \langle n_1 | \langle n_2 | \psi \rangle \langle \psi | n_2' \rangle | n_1' \rangle$$

It is still a square matrix with $[(n_{1max} + 1)(n_{2max} + 1)]^2$ elements.

We might want to measure the expectation value of an operator that operates on both systems 1 and 2: A(1,2)

$$\langle \mathbf{A} \rangle = \operatorname{Trace}(\boldsymbol{\rho}\mathbf{A})$$

= $\sum_{n_1,n_2} (\boldsymbol{\rho}\mathbf{A})_{n_1n_2;n_1n_2}$

Alternatively, we might want to measure the expectation value of an operator that operates only on system 1: call it B(1).

To use the Trace(ρB) method, need the concept of **partial traces** and need to <u>formally</u> extend **B** so that it acts as a dummy operator on system 2.

$$\tilde{B}(1) = B(1) \otimes \mathbf{1}_{(2)}$$

Several types of initial preparation are possible:

- 1. pure state of $1 \otimes 2$ (a "tensor product" state)
- 2. statistical mixture in 1, pure state in 2.
- 3. statistical mixture in both.

Entanglement! Handout from 10/11/02. Science 298, p369 (2002).

Several types of observation are possible:

- 1. separate observation of subsystem 1 or 2
- 2. simultaneous measurement of both systems

$$\mathbf{H} = \begin{pmatrix} 0 & 5 & 2 \\ 5 & 2 & 0.5 \\ 2 & 0.5 & 20 \end{pmatrix}$$

This **H** has a 2×2 quasi-degenerate block and both members of this block interact weakly with a non-quasi-degenerate remote state.

$$\mathbf{H}^{(0)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 20 \end{pmatrix}$$
$$\mathbf{H}^{(1)} = \begin{pmatrix} 0 & 5 & 2 \\ 5 & 0 & 0.5 \\ 2 & 0.5 & 0 \end{pmatrix}$$
$$\mathbf{H}^{(2)} = \begin{pmatrix} \frac{2^2}{-20} & \frac{(2)(0.5)}{0+2} & 0 \\ -\frac{1}{19} & \frac{0.5^2}{-18} & 0 \\ 0 & 0 & \left(\frac{2^2}{20} + \frac{0.5^2}{18}\right) \end{pmatrix}$$
Van Vleck Transformation
$$H^{(2)}_{nn'} = \sum_{\substack{k \\ \text{out-of-block}}} \frac{H^{(1)}_{nk} H^{(1)}_{kn'}}{\frac{E^{(0)}_{n} + E^{(0)}_{n'}}{2} - E^{(0)}_{k}}$$

CTDL use this definition of $\tilde{\mathbf{B}}(1)$ (page 306) to prove that

$\langle \tilde{\mathbf{B}}(1) \rangle = \mathrm{Tr}(\boldsymbol{\rho}(1)\mathbf{B}(1))$	calculated as if
、	system 1 were
	isolated from
	system 2

for coupled H–O system

operator of type (1,2)	$\mathbf{a}_1^\dagger \mathbf{a}_1 \mathbf{a}_2^\dagger \mathbf{a}_2$	(a correlated property of two parts of the system)
type (1)	$\mathbf{a}_1^\dagger \mathbf{a}_1$	
or type (2)	$\mathbf{a}_2^\dagger \mathbf{a}_2$	
or type (1 + 2)	$\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}+\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}\right)$	
		See Chem. Phys. Lett. 320, 553 (2000).

Suppose t = 0 wavepacket is located at turning point of $v_2 = 5$ in oscillator #2 and at $x_1 = 0$ for oscillator #1

$$\Psi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{t} = 0) = \sum_{n_2=0}^{\infty} a_{n_2} |0, n_2\rangle^{(0)}$$

Discuss initial preparation that gives dynamics within a polyad and between polyads. Diagnostics in state and in configuration space.

suppose we have $\omega_1 = 2\omega_2$ $P = 2n_1 + n_2$ polyads. and only the $|0,P\rangle^{(0)}$ state is "bright" (i.e. excitation is initially

in oscillator #2)

The initial state is a coherent superposition of several polyads. Motion occurs in *both* coordinate space and in state space. Each kind of motion is sampled by a different class of diagnostic.

so that we can use
$$E_{P,n}$$
 in $e^{-iE_{P,n}t/\hbar}$
to express $\Psi(x_1, x_2, t)$
get motion of w.p. on

get motion of pieces of state vector within each Polyad P.

Could want expectation values of quantities like $N_1, N_2, P, x_1, x_1x_2^2$:

$$\begin{aligned} \mathbf{N}_{1} &= \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} \\ \mathbf{N}_{2} &= \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} \end{aligned}$$
 state space
$$\begin{aligned} \mathbf{N}_{2} &= \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} \end{aligned}$$
 state space
$$\begin{aligned} \mathbf{N}_{1}(t) + \mathbf{N}_{2}(t) &= \mathbf{P} \\ \text{coordinate space} & \begin{cases} \mathbf{x}_{1} &= 2^{-1/2} \left(\mathbf{a}_{1} + \mathbf{a}_{1}^{\dagger} \right) \\ \mathbf{x}_{1} \mathbf{x}_{2}^{2} &== 2^{-3/2} \left(\mathbf{a}_{1} + \mathbf{a}_{1}^{\dagger} \right) \left(\mathbf{a}_{2} + \mathbf{a}_{2}^{\dagger} \right)^{2} \end{aligned}$$

11

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.