Wigner-Eckart Theorem
 CTDL, pages 999-1085, esp. 1048-1053

Final lecture on $1 \mathrm{e}^{-}$Angular Part
Next: 2 lectures are on $1 \mathrm{e}^{-}$radial part
Many-e- problems - 8 lectures!

Previous Lecture: $\quad\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle \quad$ vs. $\quad\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ coupled uncoupled

Transformation between these basis sets is general and tabulated

Vector Coupling Coefficients
Clebsch-Gordan Coefficients
3-j Coefficients

Same information, increasingly convenient formats.

Correlation Diagrams between limiting cases

* non-crossing rule for states with the same value of rigorously good quantum numbers (zero calculation approach)
* non-degenerate perturbation theory sequence of steps for inclusion of information about the opposite limit: $E^{(0)}, E^{(0)}+E^{(1)}, E^{(0)}+E^{(1)}+E^{(2)}$
* exact diagonalization

How does the pattern of energy levels for one limiting case morph into that for the other limiting case?
Note that $\mathbf{J}_{i}, \mathbf{L}_{i}, \mathbf{S}_{i}$ operators cannot cause off-diagonal matrix elements in $\left|\mathrm{JM}_{\mathrm{J}}\right\rangle,\left|\mathrm{LM}_{\mathrm{L}}\right\rangle$ or $\left|\mathrm{SM}_{\mathrm{S}}\right\rangle$ basis sets, respectively.

However \mathbf{L}_{z} and \mathbf{S}_{z} can cause $\Delta \mathrm{J}= \pm 1$ matrix elements in the $\left|\mathrm{J} \mathrm{M}_{\mathrm{J}}\right\rangle$ basis set.
Why? Because \mathbf{L} and \mathbf{S} are vectors with respect to \mathbf{J}.

Triangle Rule: $|\mathrm{L}-\mathrm{S}| \leq \mathrm{J} \leq \mathrm{L}+\mathrm{S}$
Maybe it is better to think about classification of operators as "like" an angular momentum $\rightarrow T_{\mu}^{(\omega)}$! Spherical tensor operators behave like angular momenta.

$$
T_{\mu}^{(\omega)}\left|J_{i} M_{i}\right\rangle \text { gives } J+\omega, J+\omega-1, \ldots|J-\omega|
$$

This works! We construct operators classified by what they do to members of the $\left|\mathrm{JM}_{\mathrm{J}}\right\rangle$ basis set.

How? Commutation Rule definitions of the $T_{\mu}^{(\omega)}$ operators:

$$
\begin{aligned}
& {\left[\mathbf{J}_{ \pm}, T_{\mu}^{(\omega)}\right]=\hbar[\omega(\omega+1)-\mu(\mu \pm 1)]^{1 / 2} T_{\mu \pm 1}^{(\omega)}} \\
& {\left[\mathbf{J}_{z}, T_{\mu}^{(\omega)}\right]=\hbar \mu T_{\mu}^{(\omega)}}
\end{aligned}
$$

All matrix elements $T_{\mu}^{(\omega)}$ in the $|\mathrm{JM} \mathrm{J}\rangle$ basis set are derivable (and inter-related) from these commutation rules.

Do the above commutation rules look familiar? We see the same thing from $\mathrm{J}_{ \pm}|\mathrm{JM}\rangle$ and $\mathrm{J}_{\mathrm{z}}|\mathrm{JM}\rangle$.

This is a mixture of intuition plus rigor based on tabulated coupling constants.
The Wigner-Eckart Theorem gives us everything we need. The derivation of the W-E theorem from commutation rules is extremely tedious. The Herschbach handout illustrates some of the derivation. [Supplement \#1]

5.73 Lecture \#27

Scalar, Vector, and Tensor Operators
Selection Rules

Scalar $\quad \mathbf{S} \quad T_{0}^{(0)}$ matrix elements are $\Delta J=0, \Delta M=0 \quad$ M-independent
Vector $\quad \mathbf{V} \quad T_{\mu}^{(1)}$ matrix elements are $\Delta J=0, \pm 1, \Delta M=0, \pm 1 \quad$ explicitly Mdependent

Tensor $\quad T_{\mu}^{(\omega)} \quad \omega=$ rank, $\mu=$ component

We seldom see Tensors with $\omega>2$.
Construct and classify operators via Commutation Rules

	Rank: ω	"Like"	components: μ
Scalar	1 component	0	$\mathrm{~J}=0$

Example: $\mathbf{J}-\mathbf{L}+\mathbf{S}$

1. $[\overrightarrow{\mathbf{L}}, \overrightarrow{\mathbf{S}}]=0$. L and \mathbf{S} act as scalar operators with respect to each other (because they operate on different coordinates)
2. $\quad \overrightarrow{\mathbf{L}}$ and $\overrightarrow{\mathbf{S}}$ act as vector operators with respect to $\overrightarrow{\boldsymbol{J}}$
3. $\quad \overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{S}}$ acts like a scalar operator with respect to $\overrightarrow{\boldsymbol{J}}$
4. $\quad \overrightarrow{\mathbf{L}} \times \overrightarrow{\mathbf{S}}$ gives 3 components of a vector operator with respect to $\overrightarrow{\boldsymbol{J}}$

5.73 Lecture \#27

We can use commutation rules to project out of any operator the part that acts like a $T_{\mu}^{(\omega)}$ or we can construct such $T_{\mu}^{(\omega)}$ operators explicitly!

Wigner-Eckart Theorem

$$
\left\langle N^{\prime} J^{\prime} M_{J}^{\prime}\right| T_{\mu}^{(\omega)}\left|N J M_{J}\right\rangle=A_{M \mu M^{\prime}}^{J \omega J^{\prime}} \delta_{M^{\prime} M+\mu}\left\langle N^{\prime} J^{\prime}\right|\left|T^{(\omega)}\right||N J\rangle
$$

N ' and N are radial quantum numbers (i.e. everything that is not a specified angular momentum)
$A_{M \mu M^{\prime}}^{J \omega J^{\prime}}$ is a tabulated vector coupling coefficient (or Clebsch-Gordan or 3-j) $\left\langle N^{\prime} J^{\prime}\left\|T^{(\omega)}\right\| N J\right\rangle$ is a "reduced matrix element"

It is reduced in the sense that M, μ, and M are removed.
Often the reduced matrix elements of $T_{\mu}^{(\omega)}$ can be evaluated by looking at matrix elements of "stretched staes": $\overrightarrow{\boldsymbol{J}}=\overrightarrow{\boldsymbol{J}}+\overrightarrow{\boldsymbol{J}}_{2}, J=J_{1}+J_{2}$ and $\mu=\omega$.

Recall that extreme members of coupled and uncoupled basis sets are equal.

$$
\left|J=L+S, L, S, M_{J}=L+S\right\rangle=\left|L M_{L}=L, S M_{S}=S\right\rangle
$$

Major simplifications result for stretched states.

How to build specified $T_{\mu}^{(\omega)}$ operators out of components of specific angular momenta [denoted in square brackets].

$$
\begin{aligned}
& T_{ \pm 1}^{(\omega)}[L]=\mp 2^{-1.2}\left[L_{x} \pm i L_{y}\right] \\
& T_{0}^{(1)}[L]=L_{z}
\end{aligned}
$$

What about $T_{ \pm 2}^{(2)}[L] ? \rightarrow\left(L_{ \pm}\right)^{2}$, but what about $T_{ \pm 1}^{(2)}$ and $T_{ \pm 1}^{(1)}$?

5.73 Lecture \#27

Suppose we want tensor operators constructed from two vector operators.
$T_{0}^{(0)}[A, B]=\sum_{k=-\omega}^{\omega}(-1)^{k} T_{k}^{(\omega)}[A] T_{-k}^{(\omega)}[B]$
$T_{2}^{(2)}[A, B]=T_{1}^{(1)}[A] T_{1}^{(1)}[B] \rightarrow A_{+} B_{+}$
$T_{1}^{(2)}[A, B]=T_{1}^{(1)}[A] T_{0}^{(1)}[B]+T_{0}^{(1)}[A] T_{1}^{(1)}[B] \rightarrow A_{+} B_{0}+A_{0} B_{+}$

Display this scheme more clearly and compactly:

μ	$T_{\mu}^{(2)}[A, B]$	$T_{\mu}^{(1)}[A, B]$	$T_{0}^{(0)}[A, B]$
2	$(++)$		
1	$(+0)+(0+)$	$(+0)-(0+)$	
0	$(+-)+(-+)$	$(+-)-(-+)$	(00)
-1	$(0-)+(-0)$	$(0-)-(-0)$	
-2	$(--)$		

Nottice how we get $T^{(2)}, T^{(1)}$, and $T^{(0)}$ as orthogonal combinations of $\mathrm{A}_{i}+\mathrm{B}_{i}$.

Vector Coupling Coefficient

$$
\begin{gathered}
\left|J, J_{1}, J_{2}, M\right\rangle=\sum_{\substack{M_{2}=M-M_{1} \\
M_{2}=-J_{2}}}^{\sum_{2} \underbrace{}_{\text {coupled }}\left|J_{1}, M_{1}, J_{2}, M_{2}\right\rangle\left\langle J_{1}, M_{1}, J_{2}, M_{2}\right|}\left|J, J_{1}, J_{2}, M\right\rangle \\
\text { completeness } \\
\left(\begin{array}{ccc}
J_{1} & J_{2} & J \\
M_{1} & M_{2} & -M
\end{array}\right)=(-1)^{J_{1}-J_{2}-M}(2 J+1)^{-1 / 2} \\
3-j
\end{gathered}
$$

$$
\text { constraint } M_{1}+M_{2}-M=0
$$

Vector Coupling: no symmetry, no explicit constraints

$$
\text { Clebsch-Gordan some symmetry, explicit constraint } M_{1}+M_{2}-M=0
$$

3-j: maximum symmetry, maximum constraints (rules for permutation of columns)

5.73 Lecture \#27

Examples of Use of Commutation Rules to Reveal the Properties of Scalar Operators
Scalar Operator: $\quad\left[\mathbf{J}_{\mathbf{i}}, \mathbf{S}\right]=0 \quad$ all i

1. $\Delta \mathbf{J}=\mathbf{0} \quad$ selection rule from $\left[\mathbf{J}^{2}, \mathbf{S}\right]=0$

$$
\begin{aligned}
& 0=\left[\mathbf{J}^{2}, \mathbf{S}\right] \quad 0=\left\langle J^{\prime} M^{\prime}\right| \mathbf{J}^{2} \mathbf{S}-\mathbf{S} \mathbf{J}^{2}|J M\rangle=\hbar\left[J^{\prime}\left(J^{\prime}+1\right)-J(J+1)\right]\left\langle J^{\prime} M^{\prime}\right| \mathbf{S}|J M\rangle \\
& \text { either } \mathrm{J}=\mathrm{J}^{\prime} \text { or }\left\langle J^{\prime} M^{\prime}\right| \mathbf{S}|J M\rangle=0 \\
& \Delta \mathrm{~J}=0 \text { selection rule }
\end{aligned}
$$

2. $\Delta \mathbf{M}=\mathbf{0} \quad$ selection rule from $\left[\mathbf{J}_{\mathrm{Z}}, \mathbf{S}\right]=0$

$$
\begin{aligned}
& 0=\left\langle J M^{\prime}\right| J_{z} S-S J_{z}|J M\rangle=\hbar\left(M^{\prime}-M\right)\left\langle J M^{\prime}\right| S|J M\rangle \\
& \text { either } \mathrm{M}^{\prime}=\mathrm{M} \text { or }\left\langle J M^{\prime}\right| \mathrm{S}|J M\rangle=0 \\
& \Delta \mathrm{M}=0 \text { selection rule }
\end{aligned}
$$

3. $\quad \mathbf{M}$ independence of $\langle J M| \mathbf{S}|J M\rangle$ from $\left[\mathbf{J}_{ \pm}, \mathbf{S}\right]=\mathbf{0}$

$$
\begin{aligned}
& 0=\left\langle J M^{\prime}\right| \mathrm{J}_{ \pm} \mathrm{S}-\mathrm{S}_{ \pm}|J M\rangle=S_{J M}\left\langle J M^{\prime}\right| \mathrm{J}_{ \pm}|J M\rangle-S_{J M^{\prime}}\left\langle J M^{\prime}\right| \mathrm{J}_{ \pm}|J M\rangle \\
&=\left(S_{J M}-S_{J M^{\prime}}\right)\left\langle J M^{\prime}\right| \mathrm{J}_{ \pm}|J M\rangle \\
&\left\langle J M^{\prime}\right| \mathbf{J}_{ \pm}|J M\rangle \neq 0 \text { when } M^{\prime}=M \pm 1
\end{aligned}
$$

Thus $S_{J M}=S_{J M \pm 1}$, which means that $S_{J M}$ is independent of M.

What is so great about Wigner-Eckart Theorem?
Massive reduction in number of independent matrix elements.
For example, $\mathrm{J}=10, \omega=1$
$\left\langle J^{\prime} M^{\prime}\right| T_{\mu}^{(1)}|J M\rangle$
J^{\prime} limited to $\mathrm{J} \pm 1$ by triangle rule

J^{\prime}	\# of matrix elements			\# of reduced matrix elements		
9	$(2 \cdot 9+1)(2 \cdot 10+1)$	399	1	$c_{-}(10)=\left\langle 9\left\\|T_{\mu}^{(1)}\right\\| 10\right\rangle$		
10	$(2 \cdot 10+1)(2 \cdot 10+1)$	441	1	$c_{0}(10)=\left\langle 10\left\\|T_{\mu}^{(1)}\right\\| 10\right\rangle$		
11	$(2 \cdot 11+1)(2 \cdot 10+1)$	483	1	$c_{+}(10)=\left\langle 11\left\\|T_{\mu}^{(1)}\right\\| 10\right\rangle$		
	total	1323	3	only 3		

(one might argue that 1323 is a factor of 7 too large)
$\frac{1323}{7} \leftrightarrow 3$ is a huge reduction of what we need to know!
Special case for $\Delta J=0$ Matrix Elements of $\overrightarrow{\mathbf{V}}$!! Memorable!

$$
\left\langle J M^{\prime}\right| \overrightarrow{\mathbf{V}}|J M\rangle=\frac{\langle J||\mathbf{J} \cdot \mathbf{V} \| J\rangle}{\hbar^{2} J(J+1)}\left\langle J M^{\prime}\right| \overrightarrow{\mathbf{J}}|J M\rangle=c_{0}(J)\left\langle J M^{\prime}\right| \overrightarrow{\mathbf{J}}|J M\rangle
$$

We can replace a $\Delta J=0$ matrix element of $\overrightarrow{\mathbf{V}}$ by the corresponding matrix element of \vec{J}.

An extremely convenient (practical) operator replacement. Derive effective \mathbf{H} by replacing $\overrightarrow{\mathbf{V}}$ by $\overrightarrow{\boldsymbol{J}}$.
$c_{0}(J)$ can also be evaluated by reference to the easily derived matrix elements of stretched states.

5.73 Lecture \#27

Also can derive similar relationships via Commutation Rules
$\langle J+1, M| V_{z}|J M\rangle=c_{+}(J)[(J+M+1)(J-M+1)]^{1 / 2}$
$\langle J+1, M \pm 1| V_{ \pm}|J M\rangle=c_{+}(J)[(J \pm M+2)(J \pm M+1)]^{1 / 2}$
$\langle J M| V_{z}|J M\rangle=c_{0}(J) M$
$\langle J M \pm 1| V_{z}|J M\rangle=c_{0}(J)[J(J+1)-M(M \pm 1)]^{1 / 2}$
$\langle J-1, M| V_{z}|J M\rangle=c_{-}(J)[(J-M)(J+M)]^{1 / 2}$
$\langle J-1, M \pm 1| V_{z}|J M\rangle= \pm c_{-}(J)[(J \mp M)(J \pm M+1)]^{1 / 2}$

This has been just a taste of the power of spherical tensor algebra for problems with exact or approximate spherical symmetry.

3 -j, 6-j, 9-j algebra too burdensome to learn and remember unless you are going to use it immediately.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

