Wigner-Eckart Theorem

CTDL, pages 999 - 1085, esp. 1048-1053

Final lecture on 1e⁻ Angular Part Next: 2 lectures are on 1e⁻ radial part Many-e⁻ problems - 8 lectures!

Previous Lecture:	$ JLSM_{J}\rangle$	VS.	$ LM_LSM_S\rangle$
	coupled		uncoupled

Transformation between these basis sets is general and tabulated

Vector Coupling Coefficients Clebsch-Gordan Coefficients 3-j Coefficients

Same information, increasingly convenient formats.

Correlation Diagrams between limiting cases

- * <u>non-crossing rule</u> for states with the same value of rigorously good quantum numbers (zero calculation approach)
- * non-degenerate perturbation theory sequence of steps for inclusion of information about the opposite limit: $E^{(0)}$, $E^{(0)} + E^{(1)}$, $E^{(0)} + E^{(1)} + E^{(2)}$
- * exact diagonalization

How does the pattern of energy levels for one limiting case morph into that for the other limiting case?

Note that J_i , L_i , S_i operators cannot cause off-diagonal matrix elements in $|JM_J\rangle$, $|LM_L\rangle$ or $|SM_S\rangle$ basis sets, respectively.

However \mathbf{L}_z and \mathbf{S}_z can cause $\Delta J = \pm 1$ matrix elements in the $|JM_J\rangle$ basis set.

Why? Because L and S are vectors with respect to J.

Triangle Rule: $|L - S| \le J \le L + S$

Maybe it is better to think about classification of operators as "like" an angular momentum $\rightarrow T_{\mu}^{(\omega)}$! Spherical tensor operators behave like angular momenta.

This works! We construct operators classified by what they do to members of the $|JM_J\rangle$ basis set.

How? Commutation Rule definitions of the $T^{(\omega)}_{\mu}$ operators:

$$\begin{bmatrix} \mathbf{J}_{\pm}, T_{\mu}^{(\omega)} \end{bmatrix} = \hbar \begin{bmatrix} \omega(\omega+1) - \mu(\mu\pm1) \end{bmatrix}^{1/2} T_{\mu\pm1}^{(\omega)}$$
$$\begin{bmatrix} \mathbf{J}_{z}, T_{\mu}^{(\omega)} \end{bmatrix} = \hbar \mu T_{\mu}^{(\omega)}$$

All matrix elements $T_{\mu}^{(\omega)}$ in the $|JM_J\rangle$ basis set are derivable (and inter-related) from these commutation rules.

Do the above commutation rules look familiar? We see the same thing from $J_\pm\,|\,JM\rangle$ and $J_z\,|\,JM\rangle.$

This is a mixture of intuition plus rigor based on tabulated coupling constants.

The Wigner-Eckart Theorem gives us everything we need. The derivation of the W-E theorem from commutation rules is extremely tedious. The Herschbach handout illustrates some of the derivation. [Supplement #1]

Scalar	\mathbf{S}	$T_{_{0}}^{_{(0)}}$	matrix elements are $\Delta J = 0$, $\Delta M = 0$	M-independent
Vector	V	$T_{_{\mu}}^{(1)}$	matrix elements are $\Delta J = 0, \pm 1, \Delta M = 0, \pm 1$	explicitly M- dependent
Tensor	$T_{_{\!$	ω=	rank, μ = component	

We seldom see Tensors with $\omega > 2$.

Construct and classify operators via Commutation Rules

		Rank: ω	"Like"	components: μ
Scalar	1 component	0	$\mathbf{J}=0$	$\mu = 0$
Vector	3 components	1	J = 1	$\begin{split} \mu &= 0 \leftrightarrow \mathbf{z} \\ +1 &\to -(2)^{1/2}(x+iy) \\ -1 &\to +(2)^{1/2}(x-iy) \\ (\text{not quite like } \mathbf{J}_{\pm}) \end{split}$
Tensor	$2\omega + 1$ components	ω	$J = \omega$	+2, +1, 0, -1, -2, (for $\omega = 2$)

Example: J - L + S

- 1. $[\vec{\mathbf{L}}, \vec{\mathbf{S}}] = 0$. L and S act as scalar operators with respect to each other (because they operate on different coordinates)
- 2. $\vec{\mathbf{L}}$ and $\vec{\mathbf{S}}$ act as vector operators with respect to $\vec{\boldsymbol{J}}$
- 3. $\vec{\mathbf{L}} \cdot \vec{\mathbf{S}}$ acts like a scalar operator with respect to \vec{J}
- 4. $\vec{\mathbf{L}} \times \vec{\mathbf{S}}$ gives 3 components of a vector operator with respect to \vec{J}

We can use commutation rules to project out of any operator the part that acts like a $T^{(\omega)}_{\mu}$ or we can construct such $T^{(\omega)}_{\mu}$ operators explicitly!

Wigner-Eckart Theorem

$$\left\langle N'J'M'_{J} \left| T_{\mu}^{(\omega)} \right| NJM_{J} \right\rangle = A_{M\mu M'}^{J\omega J'} \delta_{M'M+\mu} \left\langle N'J' \left| \left| T^{(\omega)} \right| \right| NJ \right\rangle$$

N' and N are radial quantum numbers (i.e. everything that is not a specified angular momentum)

 $A^{J\omega J'}_{M\mu M'}$ is a tabulated vector coupling coefficient (or Clebsch-Gordan or 3-j) $\left\langle N'J' \Big| \Big| T^{(\omega)} \Big| \Big| NJ \right\rangle$ is a "reduced matrix element"

It is reduced in the sense that M', $\mu,$ and M are removed.

Often the reduced matrix elements of $T_{\mu}^{(\omega)}$ can be evaluated by looking at matrix elements of "stretched staes": $\vec{J} = \vec{J} + \vec{J}_2$, $J = J_1 + J_2$ and $\mu = \omega$.

Recall that extreme members of coupled and uncoupled basis sets are equal.

$$\left|J=L+S,L,S,M_{J}=L+S\right\rangle = \left|LM_{L}=L,SM_{S}=S\right\rangle$$

Major simplifications result for stretched states.

How to build specified $T_{\mu}^{(\omega)}$ operators out of components of specific angular momenta [denoted in square brackets].

$$T_{\pm 1}^{(\omega)}[L] = \mp 2^{-1.2} [L_x \pm i L_y]$$
$$T_0^{(1)}[L] = L_z$$

What about $T_{\pm 2}^{(2)}[L]? \rightarrow (L_{\pm})^2$, but what about $T_{\pm 1}^{(2)}$ and $T_{\pm 1}^{(1)}?$

Suppose we want tensor operators constructed from two vector operators.

$$T_0^{(0)} [A, B] = \sum_{k=-\infty}^{\infty} (-1)^k T_k^{(\infty)} [A] T_{-k}^{(\infty)} [B]$$

$$T_2^{(2)} [A, B] = T_1^{(1)} [A] T_1^{(1)} [B] \to A_+ B_+$$

$$T_1^{(2)} [A, B] = T_1^{(1)} [A] T_0^{(1)} [B] + T_0^{(1)} [A] T_1^{(1)} [B] \to A_+ B_0 + A_0 B_+$$

Display this scheme more clearly and compactly:

Notice how we get $T^{(2)}$, $T^{(1)}$, and $T^{(0)}$ as orthogonal combinations of $A_i + B_i$.

Vector Coupling Coefficient

$$\begin{vmatrix} J, J_1, J_2, M \\ \rangle = \sum_{\substack{M_2 = M - M_1 \\ M_2 = -J_2}}^{J_2} & | J_1, M_1, J_2, M_2 \rangle \sqrt{\langle J_1, M_1, J_2, M_2 | J, J_1, J_2, M \rangle} \\ & \text{coupled} & \begin{pmatrix} J_1 & J_2 & J \\ M_1 & M_2 & -M \end{pmatrix} = (-1)^{J_1 - J_2 - M} (2J+1)^{-1/2} & \langle J_1, M_1, J_2, M_2 | J_1, J_2, J - M \rangle \\ & \text{Clebsch-Gordan} \\ & 3 - j \end{vmatrix}$$

constraint $M_1 + M_2 - M = 0$

Vector Coupling:	no symmetry, no explicit constraints	
Clebsch-Gordan	some symmetry, explicit constraint	$M_1 + M_2 - M = 0$
3 – j:	maximum symmetry, maximum cons	traints
	(rules for permutation of columns)	

Examples of Use of Commutation Rules to Reveal the Properties of Scalar Operators

Scalar Operator: $[\mathbf{J}_i, \mathbf{S}] = 0$ all *i*

1.
$$\Delta \mathbf{J} = \mathbf{0}$$
 selection rule from $[\mathbf{J}^2, \mathbf{S}] = 0$

$$0 = [\mathbf{J}^2, \mathbf{S}] \quad 0 = \langle J'M' | \mathbf{J}^2 \mathbf{S} - \mathbf{S} \mathbf{J}^2 | JM \rangle = \hbar [J'(J'+1) - J(J+1)] \langle J'M' | \mathbf{S} | JM \rangle$$

either J = J' or $\langle J'M' | \mathbf{S} | JM \rangle = 0$
 $\Delta J = 0$ selection rule

2. $\Delta \mathbf{M} = \mathbf{0}$ selection rule from $[\mathbf{J}_z, \mathbf{S}] = 0$ $0 = \langle JM' | J_z S - SJ_z | JM \rangle = \hbar (M' - M) \langle JM' | S | JM \rangle$ either M' = M or $\langle JM' | S | JM \rangle = 0$

 $\Delta M = 0$ selection rule

3. **M** independence of $\langle JM | S | JM \rangle$ from $[J_{\pm}, S] = 0$

$$0 = \left\langle JM' \middle| \mathbf{J}_{\pm} \mathbf{S} - \mathbf{S} \mathbf{J}_{\pm} \middle| JM \right\rangle = S_{JM} \left\langle JM' \middle| \mathbf{J}_{\pm} \middle| JM \right\rangle - S_{JM'} \left\langle JM' \middle| \mathbf{J}_{\pm} \middle| JM \right\rangle$$
$$= \left(S_{JM} - S_{JM'} \right) \left\langle JM' \middle| \mathbf{J}_{\pm} \middle| JM \right\rangle$$
$$\left\langle JM' \middle| \mathbf{J}_{\pm} \middle| JM \right\rangle \neq 0 \text{ when } M' = M \pm 1$$

Thus $S_{_{J\!M}} = S_{_{J\!M\pm 1}}$, which means that $S_{_{J\!M}}$ is independent of M.

What is so great about Wigner-Eckart Theorem?

Massive reduction in number of independent matrix elements.

For example, J = 10, $\omega = 1$

$$\left\langle J'M' \Big| T^{(1)}_{\mu} \Big| JM \right\rangle$$

J' limited to J ± 1 by triangle rule

J	# of matrix elements			# of reduced matrix elements
9	$(2 \cdot 9 + 1)(2 \cdot 10 + 1)$	399	1	$c_{-}(10) = \left\langle 9 \left\ T_{\mu}^{(1)} \right\ 10 \right\rangle$
10	$(2 \cdot 10 + 1)(2 \cdot 10 + 1)$	441	1	$c_0(10) = \langle 10 T_{\mu}^{(1)} 10 \rangle$
11	$(2 \cdot 11 + 1)(2 \cdot 10 + 1)$	483	1	$c_{+}(10) = \langle 11 T_{\mu}^{(1)} 10 \rangle$
	total	1323	3	only 3

(one might argue that 1323 is a factor of 7 too large)

 $\frac{1323}{7} \leftrightarrow 3$ is a huge reduction of what we need to know!

Special case for $\Delta J = 0$ Matrix Elements of $\vec{\mathbf{V}}$!! Memorable!

$$\left\langle JM' \left| \vec{\mathbf{V}} \right| JM \right\rangle = \frac{\left\langle J \right| \left| \mathbf{J} \cdot \mathbf{V} \right| \left| J \right\rangle}{\hbar^2 J (J+1)} \left\langle JM' \left| \vec{\mathbf{J}} \right| JM \right\rangle = c_0 (J) \left\langle JM' \left| \vec{\mathbf{J}} \right| JM \right\rangle$$

We can replace a $\Delta J = 0$ matrix element of $\vec{\mathbf{V}}$ by the corresponding matrix element of \vec{J} .

An extremely convenient (practical) operator replacement. Derive effective **H** by replacing $\vec{\mathbf{V}}$ by \vec{J} .

 $c_0(J)$ can also be evaluated by reference to the easily derived matrix elements of stretched states.

Also can derive similar relationships via Commutation Rules

$$\langle J+1, M | V_z | JM \rangle = c_+ (J) [(J+M+1)(J-M+1)]^{1/2} \langle J+1, M \pm 1 | V_{\pm} | JM \rangle = c_+ (J) [(J \pm M+2)(J \pm M+1)]^{1/2} \langle JM | V_z | JM \rangle = c_0 (J) M \langle JM \pm 1 | V_z | JM \rangle = c_0 (J) [J (J+1) - M (M \pm 1)]^{1/2}$$

$$\langle J-1, M | V_z | JM \rangle = c_{-}(J) [(J-M)(J+M)]^{1/2}$$

 $\langle J-1, M \pm 1 | V_z | JM \rangle = \pm c_{-}(J) [(J \mp M)(J \pm M + 1)]^{1/2}$

This has been just a taste of the power of spherical tensor algebra for problems with exact or approximate spherical symmetry.

3-j, 6-j, 9-j algebra too burdensome to learn and remember unless you are going to use it immediately.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.