5.73

Quiz 27 ANSWERS

$$
\begin{aligned}
& \mathbf{T}_{ \pm 1}^{(1)}=\mp 2^{-1 / 2}(\mathbf{x} \pm i \mathbf{y}), \quad \mathbf{T}_{0}^{(1)}=\mathbf{z} \\
& {\left[\mathbf{J}_{i}, \mathbf{q}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{q}_{k}}
\end{aligned}
$$

A. Show that $\left[\mathbf{J}_{z}, \mathbf{T}_{-1}^{(1)}\right]=\hbar \mathbf{T}_{-1}^{(1)}$

$$
\begin{aligned}
& \mathbf{T}_{-1}^{(1)}=+2^{-1 / 2}(\mathbf{x}-i \mathbf{y}) \\
& {\left[\mathbf{J}_{z}, \mathbf{T}_{-1}^{(1)}\right]}
\end{aligned}=2^{-1 / 2}\left(\left[\mathbf{J}_{z}, \mathbf{x}\right]-\left[\mathbf{J}_{z}, i \mathbf{y}\right]\right) .
$$

B. Show that $\left[\mathbf{J}_{-}, \mathbf{T}_{-1}^{(1)}\right]=0$

$$
\begin{aligned}
{\left[\mathbf{J}_{-}, T_{-1}^{(1)}\right] } & =\left[\mathbf{J}_{x}-i \mathbf{J}_{y}, 2^{-1 / 2}(\mathbf{x}-i \mathbf{y})\right] \\
& =2^{-1 / 2}\left(\left[\mathbf{J}_{x}, x\right]-i\left[\mathbf{J}_{x}, y\right]-i\left[\mathbf{J}_{y}, x\right]-\left[\mathbf{J}_{y}, y\right]\right) \\
& =2^{-1 / 2}\left(0-i(i \hbar)_{z-i}(i \hbar)(-z)+0\right) \\
& =2^{-1 / 2}[\hbar z-\hbar z]=0
\end{aligned}
$$

C. If $\mathbf{T}_{\mu}^{(\omega)}$ satisifes the $\left[\mathbf{J}_{ \pm}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar[\omega(\omega+1)-\mu(\mu \pm 1)]^{1 / 2} \mathbf{T}_{\mu \pm 1}^{(\omega)}$ and $\left[\mathbf{J}_{z}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar \mu \mathbf{T}_{\mu}^{(\omega)}$ definitions, then we are supposed to know all selection rules for matrix elements of $\mathbf{T}_{\mu}^{(\omega)}$ in the $\left|\mathrm{JM}_{\mathrm{J}}\right\rangle$ basis set. What are the $\Delta \mathrm{J}$ and $\Delta \mathrm{M}_{\mathrm{J}}$ selection rules for $\mathbf{T}_{+2}^{(3)}$?

$$
\begin{aligned}
& \Delta \mathrm{J}= \pm 3, \pm 2, \pm 1,0 \\
& \Delta \mathrm{M}=+2
\end{aligned}
$$

$\Delta \mathrm{J}=\quad \Delta \mathrm{M}_{\mathrm{J}}=$
D. Show that the operator $\left(\mathbf{L}_{+}\right)^{2}$ satisfies at least one part of the commutation rule definition for $\mathbf{T}_{+2}^{(2)}:\left[\mathbf{J}_{z}, \mathbf{T}_{2}^{(2)}\right]=\hbar 2 \mathbf{T}_{2}^{(2)}$.

$$
\left[\mathbf{J}_{z}, \mathbf{L}_{+}^{2}\right]=\mathbf{L}_{+}\left[\mathbf{J}_{z}, \mathbf{L}_{+}\right]+\left[\mathbf{J}_{z}, \mathbf{L}_{+}\right] \mathbf{L}_{+}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

