Name

5.73

Quiz 11

1.

$$
\begin{array}{r}
\text { Consider the Hamiltonian matrix } \\
\qquad \mathbf{H}=\frac{1}{3}\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 7 & -2 \\
1 & -2 & 7
\end{array}\right)
\end{array}
$$

which has eigenvectors

$$
6^{-1 / 2}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), 3^{-1 / 2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), 2^{-1 / 2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),
$$

and eigenvalues 1,2 , and 3 (not necessarily in the same order as the eigenvectors).
A. Determine the one-to-one correspondence between eigenvectors and eigenvalues.
B. Construct, by assembling eigenvectors in the right way, the matrix \mathbf{T} which you expect will diagonalize H in the sense THT^{\dagger} (but do not verify that it actually diagonalizes H).
C. The time-evolution operator is: $\mathbf{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\exp \left[-\mathrm{iH}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right]$. The matrix $\mathbf{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)$, expressed in the same basis set of the original non-diagonal \mathbf{H} is

$$
\mathbf{U}=\mathbf{T}^{\dagger} \exp \left[-\mathrm{i} \mathbf{T H} \mathbf{T}^{\dagger}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right] \mathbf{T}
$$

where $\mathbf{T H T}^{\dagger}$ is diagonal. Write the 3×3 diagonal matrix:

$$
\exp \left[-\mathrm{i} \mathbf{T H T}^{\dagger}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right]=
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

