
 

  

  

  

  



  

  
  

  

      

  

   

 

   

  

      

 

5.73 Lecture #29 29 - 1 

Begin Many-e– Atoms: Quantum Defect Theory 

See MQDT Primer by Stephen Ross, pages 73-110 in Half Collision 
Resonance Phenomena in Molecules (AIP Conf. Proc. #225, 
M. Garciá-Sucre, G. Raseev, and S.C. Ross) 1991. 

Last Time: 

(r) = − 
e2 "2ℓ(ℓ +1)

turning points of Vℓ + 2r 2µr 
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for ℓ << nn,ℓ ⎥ 
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* r± ⎟
⎠

2n
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* unℓ(r) ≡ rRnℓ(r) is dominated by a small lobe (n-independent nodal position) near the 
envelope inner turning point, amplitude scales as n–3/2, and a large lobe at the outer turning point 

(r )−1/2 (containing essentially all of the probability).unℓ (r ) ∝ pnℓ 

ℜ* E = IP − 
nℓ 2n 

nodes: n − ℓ −1 radial nodes * 
ℓ angular nodes 
n −1 total nodes 

h
λ 2 gives spacing between radial nodes, λ(x) = 

p(x) 
σexpectation value scaling of r* 

σ < −1 ∝ n−3 

σ ≥ +1 ∝ n2σ (see below) 

σ = −1 ∝ n−2 (H-atom energy levels) 

Geometric mean of expectation values of r for off-diagonal matrix elements: 

r ∝ n2 

nℓ 

)1/2 )1/2 1/2 1/2 
σnℓ r ∝ ⎡(r (r ⎤

σ 

≈ ⎡(n2 ) (n′2 ) ⎤
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n′ℓ′ + nℓ + n′ℓ′⎣⎢ ⎦⎥ ⎣⎢ ⎦⎥ 

)σ 2σ= (nn′ ≈ n 

r n(when is ≈ r 
n 
?) 
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5.73 Lecture #29 29 - 2 
TODAY 

1. Many-e– atom treated as a core plus an outer e– that sees a partly shielded
core as having a charge distribution Z(r).

ℜ
2. ℓ-dependent energy shifts → n-independent quantum defects Enℓ = IP − 2(n − μ )

"   nℓ
ν 

3. energy shifts are actually phase shifts of unℓ(r) relative to unℓ(r) for H-atom

4. Rigorous QDT

A. regular and irregular Coulomb functions f,g satisfy Hydrogen-like
Schrödinger Equation OUTSIDE the core

B. Boundary conditions at r → ∞
1/2 

⎡ ℜ ⎤
Noninteger values of ν = ⎢− ⎥ require a sum of f  and g Coulomb functions. 

E⎣ nℓ ⎦
Find the value of ν = n − μℓ that satisfies the r → ∞ boundary condition

∞ number of members in the series of ν's (effective principal quantum number)
spaced by 1.000, ∴constant quantum defect

e– colliding with core can also transfer energy and angular 
momentum to the core-e–

* “channels” rather than individual eigenstates

* focus on dynamics, but in a “black box” way. Dynamics happens within a
restricted region of space. This region of space is always sampled, regardless of
E, in the same way for every member of a Rydberg series. Everything is
determined by the boundary conditions for the outgoing wave.
SCATTERING THEORY rather than an EFFECTIVE HAMILTONIAN
MODEL.

The goal here is to extract from a complicated many-body problem some regular 
features that will help in assigning, understanding, and modeling experimental 
data. 
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C. πµℓ is a phase shift
repeated patterns in each ν → ν + 1 integer region of ν

D. Multi-channel QDT
µ matrices. The matrix µ is a generalization of the quantum defect.



 

 
 
 
 

  

  

     

   

 

  

  

 

  

  

   

     
 

5.73 Lecture #29 29 - 3 

1. Many-e– Atom 

• +Z 

r0 

e– 

outer electron 
(valence, Rydberg) 

Z 
outside core e– sees Z = +1 
inside core e– sees Z(r) Shell Structure

1 

ensures n–3 

rather than n–2 

rcore 

2. ℓ-dependent sampling of core as r → 0, H(1) diverges faster than − e2 r 
high ℓ : see ~ +1Z ( )r  because Z(0) > 1. 

e2low ℓ : see = Zℓ 
eff >> 1 cZ ( )r 

ℓ(1) H(1) − ∴ Enℓ = nℓ nℓ ∝ − 3nenergy stabilization r 

⇓& ⇓&

H(0) ( ) H = + H 1 

⎡⎣Z(r) −1⎤⎦e
2 

H(1) ≈ − 

c cℜ −ℜ
r 

ℓ ℓ∴ E = − − 
n n (n − μ )2 2ℜ

≈ ∴ μ = << n nℓ 2 3 ℓ 

ℓ expand in Taylor series 

call this ν, “effective principal 
quantum number*” 

so far we have focussed on Enℓ 

3. What does Z(r) do to unℓ(r)? 

* outside core e – sees same Vℓ(r) as Hydrogen atom 
* must be same as unℓ(r) for H except for phase shift inward (why inward?) 
* all the unique stuff occurs inside the core — causes the phase shift. 

- nodal structure inside core is invariant with respect to n or E (the locations of the 
nodes are not dependent on �, but the amplitudes between nodes scale as �–3/2) 
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5.73 Lecture #29 29 - 4 
Mulliken:  “ontogeny recapitulates phylogeny”

intra-core nodal structure is n-independent 
nodal structure encodes all e–↔nucleus dynamics! 

4. Do all of this more rigorously: Quantum Defect Theory

* regular Rydberg series, one series for each value of ℓ" These are what 
* n-scaling of inner lobe amplitude and of all matrix elements we will obtain.
* large quantum defects for small ℓ"
* entire Rydberg series and the associated ionization continuum (e–

ejected in a specified ℓ-partial wave) is a single entity

follow treatment by Ross, but not using atomic units:
ℜredefine 0 of EEn = − 2 n = 1,2,… for H, E = 0 at n = ∞ 
n 

−1/2 
⎡ E ⎤

n = −
⎣⎢ ℜ 

n 

⎦⎥ −1/2 
⎡ Eν

⎤
generalize to noninteger-n for non-hydrogen: ν ≡ ⎢− ⎥ℜ⎣ ⎦
use ν (effective principal quantum number, ν) rather than E as a label for u nℓ (r) 

as a continuousSchrödinger Equation for H (the “Coulomb Equation”) 
variable rather than as 
an integer quantum 

!2 d 2

dr2
− 

e2ℓ(ℓ +1)⎧
⎨
⎪⎩

⎫
⎬
⎪⎭

uℓ
⎡ ⎤ 

⎥
⎦

− 
number 

(ν,r) = 0− E− ⎢
⎣ r22 µ r 

ℜE = − 
ν2 

well known solutions: 
2nd-order differential equation - two linearly independent 
solutions (at each ℓ,ν) 

fℓ (ν,r) → 0 as r → 0 "regular" 

gℓ (ν,r) → ∞ as r → 0 "irregular" 

of no use for Hydrogen, but it turns out that we need both f and g to 
satisfy r → ∞ boundary condition when � is non-integer 

(We do not use f or g all the way in to r → 0. We use them only outside some 
critical radius. So we are not concerned by the divergence of g� as r → 0) 
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5.73 Lecture #29 29 - 5 
For the H atom, we have no use for gℓ(ν,r) because it cannot satisfy the 
boundary condition as r → 0 

A. For many-e– atoms, beyond some critical r0, Schrödinger Equation is 
identical to that of H. The only difference is that we must treat the r → 0 
boundary condition differently. 

Universal boundary conditions are r → ∞, uℓ (ν,r) → 0 

for E < 0, r → ∞, asymptotic forms for f and g are 

fℓ (ν,r → ∞) → C( )r sin[π(ν − ℓ)]er /ν 

gℓ (ν,r → ∞) → −C( )r cos[π(ν − ℓ)]er /ν 

C(r) → 0 as r → ∞ 

but C(r)er /ν → ∞ as r → ∞,  so the only way to satisfy the r → ∞ boundary 

condition for a pure uℓ (ν,r ) = fℓ (ν,r ) is for (ν − ℓ)=integer 
regular Coulomb function 

B. But we might want to use a mixture of fℓ and gℓ to deal with non-integer 
(ν – ℓ), which we will need to deal with many-electron atoms. 

For an Na atom, uℓ(ν,r) emerges from 
the core with extra phase accumulation

H relative to the H atom. This 
corresponds to a “sucking in” of a 
hydrogenic function. 

core 
This is the mixed !, # form of $ℓ(&"') when & − ℓ is non-integer. 

u
ℓ
(ν,r)= αf

ℓ
(ν,r)−(1− α2)1/2 g

ℓ
(ν,r) ** 

* invariance of intra-core nodal structure – amount of 
phase shift along a Rydberg series should be 
independent of ν. [We expect this to be true.] 

* mixing of 2 types of Coulomb functions is required 
in order to have noninteger ν, yet still satisfy the 
uℓ(ν,r)→0 as the r → ∞ boundary condition. 

Na 

Z = +11 
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5.73 Lecture #29 29 - 6 
TRICK: α ≡ cos(πμ

ℓ ) ⎤ plug this into the ** equation⎥ 
)1/2 

−(1− α2 = −sin(πμ
ℓ )⎥⎦ 

on page 29-5

ψ = uℓ (v,r)Φℓ 
(CORE) = [ fℓ (v,r)cos(πµℓ ) − gℓ (v,r)sin(πµℓ )]Φℓ

plug in the asymptoptic forms for f and g 

ψ ⇒ {sin[π(v − ℓ)]cos(πµℓ ) + cos[π(v − ℓ)]sin(πµℓ )}C(r)er/vΦℓ
f
ℓ 
(ν,r ) − g

ℓ 
(ν,r )

the factor { }→ 0 as r → ∞ is required. How?
{ } = 0 : sin ⎡⎣π(ν − ℓ)⎤⎦cos(πμ ) = −cos ⎡⎣π(ν − ℓ)⎤⎦sin(πμ )ℓ ℓ 

sin ⎡⎣π(ν − ℓ)⎤⎦ sin(πμ )
This requires that = − ℓ 

cos ⎡⎣π(ν − ℓ)⎤⎦ cos(πμ )ℓ constraint on �. What are all of 
the values of � which are 

tan ⎡⎣π(ν − ℓ)⎤⎦ = − tan(πμ ) consistent with this constraint?ℓ 

tanθ = − tan(−θ) = − tan(−θ + n′π ↑) ordinary trigonometry
integer 

let θ = πμℓ
∴ tan[π(ν − ℓ)] = tan(–θ + n′π)

thus − θ + n′π = π(ν − ℓ) ⇒ θ = n′π − π(ν − ℓ)
θ = πµℓ 

θ = π(n′ − ν + ℓ)but πµℓ = π n '− ν + ℓ("    )n '+ℓ≡n 

↑ n = n′ + ℓ, μ = n − ν 
ℓinteger 

ν = n – µℓ
ν is smaller than integer-n
by constant term µℓ.

updated August 17, 2020 @ 2:20 PM 
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This implies the existence of an infinite series of ψ with values of integer n 
for which ψ → 0 as r → ∞. 



 
 
 



 

  

 

      

  

 
 

  

    

 

5.73 Lecture #29 29 - 7 
Get this infinite series of ν’s, increasing in steps of 1, simply by 
specifying one ν-independent value of µℓ! 

All of the ν-dependence (E-dependence) of ψℓ(ν,r) is explicitly built 
into fℓ(ν,r) and gℓ(ν,r). µℓ describes the relative amounts of fℓ and gℓ 
in ψ. This amount of f,g mixing is determined when the e– leaves 
the core with the precise phase shift ensures that ψ → 0 at r → ∞. 

C. How can we show that πµℓ  is a phase shift? 

The asymptotic form of ψ is 
r/νψ → {sin ⎡⎣π(ν − ℓ)⎤⎦cos(πμℓ ) + cos ⎡⎣π(ν − ℓ)⎤⎦sin (πμℓ )}C(r)e 

use the double angle formula: sin Acos B + sin Bcos A = sin( A + B) 

⎡ ⎤ψ → {sin 
⎣⎢
π(ν − ℓ) + πμℓ ⎦⎥}C(r)er /ν 

but f (ν,r ) → sin ⎡⎣π(ν − ℓ)⎤⎦C ( )r er /ν 
ℓ 

so this modified function is identical to the regular [i.e. fℓ(�,r)] 
Coulomb function but with a πµℓ phase shift. 

If µℓ > 0, this corresponds to an advance of the phase of uℓ(ν,r) 
relative to that for H. As expected, ψ is sucked into the core by 
an amount πµℓ [+ an arbitrary number of 2π’s] by the radial 
charge distribution Z(r) of the core. 

πµℓ is the phase shift that occurs inside the core. It is the 
boundary condition at r = 0 shifted out to r = r0. On the other 
hand, the r → ∞ boundary conditions is satisfied by � = n – µℓ 
where n is an integer. 

the 
quantum 

defect! 
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5.73 Lecture #29 29 - 8 

Small (replicated) region of the n-scaled energy level diagram: 

exact replica 
of lower-n 
pattern 

n + 1 

n 

s p d f … 

& 

μ s >> μ p > μd > μ f … ≈ 0 

everything is exactly repeated in each  to  + 1 region of 

ν& ν, not E, is the way to look at Rydberg “patterns”

Finding the way to see a pattern is ALWAYS the route to both 
“assignment” and “insight”. 

THIS COULD BE THE MOTTO FOR 5.73! 

μℓ  decreases as ℓ increases because of the expected behavior of 

Zeff (r) as sampled in the presence of a centrifugal barrier 

ℓ(ℓ +1)
∝ 2 , which reduces the penetration of the electron inside the core. 

2μr 

As ℓ increases, the electron feels progressively less and 
less of the inside-core region in which Zeff(r) > 1. 
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5.73 Lecture #29 29 - 9 

D. Inter-series interactions? Suppose you have B 2s22p1  (B = Boron). 

B+ (2s2 p) 
autoionization 

2B+ (2s ) 

“accidental” 
perturbation 

B (2s22p) 2P ground state 

Separate series converging to two series limits: B+ 2s2 and B+ 2s2p. 
perturbations (accidental) 
autoionization (systematic) 

But there is a relationship between perturbation and auto-ionization matrix elements. 

updated August 17, 2020 @ 2:20 PM 
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5.73 Lecture #29 29 - 10 

These inter-series interactions are all described by Multichannel Quantum 
Defect Theory 

Replace μs , μ p , μd etc. 

by 3× 3 μ matrices, one for each symmetry of the ion: 

⎡⎣2s2 ( 1S) ⊗ n1ℓ⎤⎦ 
2 ℓ 

more complicated 
many-electron 
coupling problem⎡⎣2s2 p( 3P)⊗ n2ℓ ±1⎤⎦ 

2 ℓ 
subject of the next 
few lectures.⎡⎣2s2 p( 1P) ⊗ n3ℓ ±1⎤⎦ 

2 ℓ 
Overall symmetry: H is totally symmetric. 

Off-diagonal elements describe inter-channel interactions (exchange of 
angular momentum between Rydberg e– and core e–s). 

They describe what happens in a collision of the Rydberg e– with the 
ion-core. Does it change the state of the ion? Does it change the kinetic 
energy and/or angular momentum of the e–? Unified picture of 
scattering at both negative E (bound states) and positive E. 

Next few lectures: 

states of many-electron atoms 

How to calculate matrix elements of many-electron (many Fermion) 
systems. 
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