5.73

Quiz 4

$$
\begin{aligned}
& \text { A normalized Gaussian centered at } \mathrm{X}_{0} \text { with variance }(\Delta \mathrm{x})^{2} \text { is described by } \\
& \qquad G\left(x ; x_{0}, \Delta x\right)=(2 \pi)^{-1 / 2}(1 / \Delta x) \mathrm{e}^{-\left(x-x_{0}\right)^{2} /\left[2(\Delta x)^{2}\right]} .
\end{aligned}
$$

A. What is the value of the Gaussian function at linecenter, $x=x_{0}$?
B. What kind of function is $\left[\mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right)\right]^{2}$?
C. What is the variance of $\left[G\left(x ; x_{0}, \Delta x\right)\right]^{2}$?
D. What is the center value of k (i.e., k_{0}) and the variance of k for

$$
\Psi(x, 0)=(31)^{-3 / 4} \int_{-\infty}^{\infty} e^{-(49 / 9)(k-5)^{2}} e^{i k(x-2)} e^{i 5} d k ?
$$

E. What is the center value of x (i.e., x_{0})?

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

