
   

 
 

 
 

 
 

 
 

 
 
 

   
 

  
 

 
 

 
  

   

 

 		 	 	 	 	 	  

 
 		 	 	 		 	 	 	 	  

 
  		 	 	 		 	 	 	 	  		   

  
  

   
 

       
    

 
    

    
 

   
 
     

 
 

  
 

Reading: 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I 
Fall, 2018 

Professor Robert W. Field 

Problem Set #2 

Merzbacher “Quantum Mechanics”, 3rd Edition: Chapter 7. 

Problems: 

2 
1. ψ1 (x) = 

a 

) 2 2 a, b, and c are real 
b2 ( x − x0 + c

A. Normalize ψ1(x) in the sense |ψ |2 dx = 1 .∫−∞
∞

2B. Compute values for x , x , and Δx for ψ1(x).

C. (optional) Compute values for k and Δk for ψ1(k) , where ψ1(k) is the 
Fourier transform of ψ1(x).
[If you choose not to do this problem, state what you expect for the form 
of Ψ1(k) and the magnitude of ∆k.] 

−c 2(x−b) 2 
2. ψ 2(x) = e eiα(x) where c, b, and α(x) are real.  Use the stationary phase idea to 

design α(x) in the region of x near x = b so that 〈 k〉 = k0 ≠ 0. 

3. (optional) Consider a potential V = 0 for x > a, V = –V0 for a ≥ x ≥ 0, and V = +∞
for x < 0.  Show that for x > a the positive energy solutions of the Schrödinger
equation have the form [taken from Merzbacher (3rd Ed.), page 111, problem 2]

i(kx + 2δ) –ikx e – e . 

Calculate the scattering coefficient |1 – e2iδ|2 and show that it exhibits maxima 
(resonances) at certain discrete energies if the potential is sufficiently deep and 
broad. 

4. The following problem is one of my “patented” magical mystery tours.  It is a
very long problem which absolutely demands the use of a computer for parts F

updated 9/19/18 



    
 

 

   

 

 
 

 
  
 

   
   

 
   

   
 

   
 

 
 

     
     

 
   

  
 

  
 

 
 

  
 

 

 
		

 

 
 

    
 

 
  

 
 

  

Chemistry 5.73 Page 2 
Problem Set #2 

and G.  There are many separate computer programs that you will need to write 
for this problem.  I urge you to divide the labor into smaller groups, each 
responsible for a different piece of programming.  I believe that the insights you 
will obtain from working together on this problem will be more than worth the 
effort expended. 

Consider the simplest possible symmetric double minimum potential: 

V(x) = aδ(x)  a > 0 –L/2 < x < L/2 
V(x) = ∞ |x| ≥ L/2. 

A. Solve for all of the eigenstates and eigen-energies for states that have odd 
reflection symmetry about x = 0.  (This part of the problem is very easy.) 

B. Solve for the energy eigenstates and eigen-energies for the 5 lowest 
energy even-symmetry states.  Choose a  = 400!2/Lm.  I suggest you use 
trial functions of form 

ψn(x) = N sin[kn(x + L/2)] –L/2 ≤ x < 0 
ψn(x) = –N sin[kn(x – L/2)] 0 < x ≤ L/2 

One way to find the eigen-energies is to plot the quantities y = tan(kL/2) 
and y = –kL/400 and to determine eigen-energies from the k-values at 
intersections.  Each En (odd n, even symmetry) is located at an 
intersection.  Note there will be exactly one value of En below the lowest 
odd-symmetry eigenstate (E2) and one value of En between each 
consecutive pair of odd-symmetry eigenstates. 

C. For an ordinary infinite square well, the ratio of the spacing between the 
two lowest levels to that between the two lowest odd–symmetry levels, is 

E2 
− E1 4 −1 3 = 0.25. R21;42 

≡ 
E4 

− E2 
16− 4 

= 12 
= 

For your double minimum potential, this level spacing ratio will decrease 
from 0.25 at a = 0 toward 0 as a increases.  For the value of a that I 
suggested, this ratio should be about 0.003. 

Repeat the calculation of R21;42 using a-values a factor of 3 and 9 smaller 
than the one you decided on above.  

Suggest a functional relationship between a and R21;42. 

updated 9/19/18 
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Problem Set #2 

D. The ratio 

R43;42 = 7/3 

is for an ordinary infinite square well.  Is the E4-E3 spacing you obtained 
for a = 400!2/Lm larger or smaller than E2–E1?  Why? 

E. For a = 400!2/Lm, plot 

ψ+(x) ≡ 2–1/2(ψ1 + ψ2) 
and 

ψ–(x) ≡ 2–1/2(ψ1−ψ2). 

What does this suggest about the possibility of creating a state localized on 
the left or right side of the well? 

F. Note that, to obtain a solution to the TDSE for a time-independent H, 

n Ψ(x,t) = ∑an ψ ne
− iE t ! .  Construct Ψ+(x,t) and Ψ–(x,t) and compute the 

n 

following three quantities (you should be able to get the answers for parts 
(ii) and (iii) from your answer to part (i)): 

(i). Survival Probability of Ψ+(x,0) 

2 

∫ Ψ+ 
* (x, t)Ψ+ (x,0 )dx P+ (t) = 

(ii). Survival Probability of Ψ–(x,0) 

2 
P (t) = ∫ Ψ− 

* (x, t)Ψ− (x,0 )dx – 

(iii). Ψ+(x,t)→Ψ–(x,0) Transfer Probability 

2 
. ∫ Ψ+ 

* (x,t )Ψ−(x, 0)dx P+− (t) = 

G. Now construct a more elaborate wavepacket from 

ΨL (x,0) = 6−1/2 [ ψ1 − ψ 2 + ψ 3 − ψ 4 + ψ5 − ψ6 ]. 

updated 9/19/18 
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Problem Set #2 

There may be several critical times in the evolution of ΨL(x,t).  These will 
likely include: 

(i) tg, the global recurrence time for the even-n levels of the infinite 

⎞
⎟
⎠ 

box without the δ-function barrier 

2mL2 
tg = ; 

h 

⎛
⎜
⎝ 

(ii) probably the longest critical time, tt, the tunneling round trip time 
for the Ψ+(x) and Ψ–(x) states in part E, 

⎞
⎟
⎠ 

h 
tt = ) ; (E2 − E1 

⎛
⎜
⎝ 

(iii) probably the shortest critical time, ts, the time corresponding to the 
largest energy difference in the superposition state 

h 
ts = ) . (E6 − E1 

2 2 
2 2mL2 h (a) Plot ΨL(x, 0) , ΨL x, ,  and ΨL x, .  

h (E2 − E1 ) 
Comment on what you see in these 3 plots.  There is a huge 
amount of information.  “Assign” as many features or 
families of features as you can.  You may need to make 
additional plots to verify your assignment hypotheses. 

(b) Calculate the following quantities and plot the following 
quantities twice, once over a short 0 ≤ t ≤ 2ts and once over 
a long 0 ≤ t ≤ 2tt time interval, 

x = ∫ Ψ* L(x,t)xΨL(x,t)dx t 
2 x = ∫ Ψ* L(x,t)x

2ΨL(x,t)dx t 
1/2 

2 Δxt = ⎢
⎡ 
x2 − x ⎥

⎤ 
. 

t ⎢ t ⎥ ⎣ ⎦ 

(c) Compare 〈 x〉 t and ∆xt and propose a reason for why the 
position variance exhibits periodic crashes toward 0.  What 
might account for such a focussing of the wavepacket? 

updated 9/19/18 
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