MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I

Fall, 2018

Professor Robert W. Field

Problem Set \#10

Reading: Golding Handout

Problems:

1. A. Devise a shortcut version of the method of $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ boxes to determine the L, S "terms" that belong to the d^{2}, $\mathrm{d}^{2} \mathrm{p}$, and $\mathrm{nd}^{2} \mathrm{n}^{\prime} \mathrm{d}$ electronic configurations. Use (and justify) your shortcut to deal with the $\mathrm{d}^{2}, \mathrm{~d}^{2} \mathrm{p}$, and $\mathrm{nd}^{2} \mathrm{n}^{\prime} \mathrm{d}$ configurations.
B. What is the total degeneracy of the d^{3} configuration? Use this result to direct your guesswork in determining the $L-S$ terms that belong to d^{3} by using your result for $n d^{2} n^{\prime} d$ and eliminating the inappropriate $\mathrm{L}-\mathrm{S}$ terms.
C. Use the ladders plus orthogonality method to derive the linear combination of Slater determinants that corresponds to the $\mathrm{d}^{2}{ }^{3} \mathrm{P} \mathrm{M}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=0$ state.
D. Use $3-\mathrm{j}$ coefficients to construct $\mathrm{L}=1, \mathrm{M}_{\mathrm{L}}=1, \mathrm{~S}=1, \mathrm{M}_{\mathrm{S}}=0$ from $\left(\ell_{1}=2, m_{1_{1}}, s_{1}=1 / 2, m_{s_{1}}\right)\left(\ell_{2}=2, m_{1_{2}}=1-m_{1_{1}}, s_{2}=1 / 2, m_{s_{2}}=-m_{s_{1}}\right)$ combinations of spin-orbitals. The relevant coupled \leftrightarrow uncoupled representation formula is:

$$
\left|J_{1} j_{2} M_{J}\right\rangle=\sum_{m_{2}=-j_{2}}^{j_{2}}(-1)^{j_{1}-j_{2}+M}(2 J+1)^{1 / 2}\left(\begin{array}{ccc}
j_{1} & j_{2} & J \\
m_{1} & m_{2} & -M_{J}
\end{array}\right)\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle .
$$

The only Slater determinants that you will need to consider are $||2 \alpha-1 \beta||,||2 \beta-1 \alpha||,||1 \alpha 0 \beta||$, and $||1 \beta 0 \alpha||$.
E. Use the $\mathbf{L}^{2}, \mathbf{S}^{2}$ method to set up the $\mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ block of d^{2}. Find the linear combination of Slater determinants that corresponds to ${ }^{3} \mathrm{P} \mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ and then use \mathbf{L}_{+} to derive ${ }^{3} \mathrm{P} \mathrm{M}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=0$.
2. A. Derive the \mathbf{L}^{2} matrix for the $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0$ Slater determinants of f^{2} shown on page 32-7.
B. Derive the \mathbf{S}^{2} matrix for $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0$ of f^{2}. Find the eigenvalues and eigenvectors.
C. Derive the four eigenvectors of the $M_{L}=3, M_{S}=0$ box of f^{2} shown on page 32-4.
D. Use the results of parts B and C to derive the relationship between the many-electron spinorbit coupling constants

$$
\zeta\left(4 \mathrm{f}^{2} ;{ }^{3} \mathrm{H}\right), \zeta\left(4 \mathrm{f}^{2},{ }^{3} \mathrm{~F}\right) \text {, and } \zeta\left(4 \mathrm{f}^{2},{ }^{3} \mathrm{P}\right)
$$

and the one-electron spin-orbit coupling constant, $\zeta(4 \mathrm{f})$.
[HINT: You are going to have to apply S_{+}or S_{-}to your eigenvectors.]
E. This is going to involve some lengthy calculations, using some combination of ladders and/or Clebsch-Gordan algebra. Work out the diagonal and off-diagonal contributions of $\mathbf{H}^{\text {SO }}$ to the $\mathrm{J}=4$ block $\left({ }^{3} \mathrm{~F}_{4},{ }^{3} \mathrm{H}_{4},{ }^{1} \mathrm{G}_{4}\right)$ of $\mathrm{f}^{2}, \mathbf{H}^{\mathrm{SO}}=\sum_{i} a\left(r_{i}\right) \ell_{i} \cdot \mathbf{s}_{i}$.
F. Suppose, at $t=0$ the single Slater determinant of $f^{2},\|3 \alpha 1 \beta\|$ is populated by a pulse of light. Compute the survival probability of the initially formed non-eigenstate,

$$
P(t)=|\langle\Psi(0) \mid \Psi(t)\rangle|^{2}
$$

To solve this problem you need to work out the $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ energies of all L-S-J terms of f^{2} that are capable of having $M_{J}=4$ (i.e. $J \geq 4$). You will also need diagonal and off-diagonal matrix elements of $\mathbf{H}^{\text {sO }}$ for $\mathrm{J}=4(3 \times 3), \mathrm{J}=5(1 \times 1)$, and $\mathrm{J}=6(2 \times 2$, but this is easy).

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

