5.73 Lecture \#17 - Perturbation Theory IV

Vibrations of Polyatomic Molecules
\mathbf{H} is ∞ dimension
How do we arrange and "read" it?
How do we truncate it? $\mathbf{H} \rightarrow \mathbf{H}^{\text {eff }}$
Near Degeneracies - accidental or "intentional" molecular dynamics is uniquely sensitive to "resonances"
unique sensitivity to inter- and intra-molecular interactions
*IVR - Intramolecular Vibrational Redistribution
LOCAL $\boldsymbol{7}^{*}$ x-k relationships
MODES *Polyads
Two frequently occurring polyad cases $2: 1$ and $2: 2$ resonances
Van Vleck Transformation for inter-polyad interactions
Isomerization
Not just for small molecules in gas phase

Mark Johnson for H -bonding in $\mathrm{H}_{2} \mathrm{O}$ clusters.

molecule with N atoms: $3 \mathrm{~N}-6$ normal modes
What is a Normal Mode?
synchronized dance of all N atoms
Classical Mechanics
Wilson Decius and Cross "Molecular Vibrations"

μ is generalized

$$
H_{12} \quad E_{n+1}^{(0)}
$$

usually $\left|\frac{H_{n m}^{(1)}}{E_{n}^{(0)}-E_{m}^{(0)}}\right| \ll 1$
but we will see 2 things:
matrix elements of \mathbf{x}^{k} grow as constant $\otimes n^{k / 2}$ and contribute to energy levels as n^{k-1}
density of states increases so some get very small
We need to deal with anharmonic interactions, which become increasingly important $\mathrm{E} \uparrow$
[use BOLD CAPITAL letters to symbolize many vibrational modes]
$3 \mathrm{~N}-6$ normal modes
What is a normal mode?

$$
\begin{aligned}
& V(\mathbf{Q})^{(0)}=\sum_{i=1}^{3-6}=\frac{1}{k} k_{i}^{2} \\
& E_{\left\{n_{i}\right\}}^{(0)}=\sum_{i=1}^{3 N-6} \hbar \omega_{i}\left(n_{i}+1 / 2\right) \\
& \text { synchronized dance of } \\
& \text { all atoms } \\
& \text { what happens if one } \\
& \text { dancer has a sprained } \\
& \text { ankle? } \\
& \text { everyone for themself! } \\
& \text { (i.e., "local modes") } \\
& \text { transitions } \mu(\mathbf{Q})=\mu_{0}+\underbrace{\frac{d \mu}{d Q_{i}} \mathbf{Q}_{i}}_{\text {change of } \mathrm{Q}_{\mathrm{i}} \text { causes change of } \mu} \\
& \mathrm{CO}_{2} \text { is symmetric } \quad \mu_{0}=0 \\
& \text { mode } 1 \\
& \underset{\text { stretch }}{\operatorname{symmetric}} \quad \frac{d \mu}{d Q_{1}}=0 \quad \Delta \mathbf{V}=0 \\
& \text { mode } 2 \quad \text { band }(\perp) \text { type } \quad \frac{d \mu}{d Q_{2}} \neq 0 \quad \Delta \mathrm{n}_{2}= \pm 1 \\
& \text { mode } 3 \quad \begin{array}{l}
\text { anti-symmetric } \\
\text { stretch }(\|) \text { type }
\end{array} \frac{d \mu}{d Q_{3}} \neq 0 \quad \Delta \mathrm{n}_{3}= \pm 1
\end{aligned}
$$

5.73 Lecture \#17 - Perturbation Theory IV

Expect simple spectra, exclusively $\Delta n_{2}=1$ or $\Delta n_{3}=1$
NOT BOTH $\Delta n_{2}=1$ and $\Delta n_{3}=1$ simultaneously
Expect energy initially deposited in specific $\left(n_{1}, n_{2}, n_{3}\right)^{0}$ basis state to stay in that state. "Mode Specific Chemistry": an unfulfilled dream

Expectations are violated because of anharmonic interaction terms.

$$
V^{(1)}(\mathbf{Q})=\sum_{i=1}\{\text { cubic terms }\}+\{\text { quartic terms }\}
$$

cubic
quartic

$$
\left\{\begin{array}{l}
\frac{1}{6} k_{111} Q_{1}^{3}+\frac{1}{6} k_{222} Q_{2}^{3}+\frac{1}{6} k_{333} Q_{3}^{3} \\
\frac{1}{2} k_{112} Q_{1}^{2} Q_{2}+\frac{1}{2} k_{113} Q_{1}^{2} Q_{3}+\frac{1}{2} k_{123} Q_{1} Q_{2} Q_{3} \\
\frac{1}{24} k_{1111} Q_{1}^{4} \text { etc. }
\end{array}\right.
$$

Each of these terms has explicitly known quantum number dependent selection rules and magnitude scaling rules.

Seems like a nightmare! But actually it is quite the opposite.
Most of the anharmonic terms connect basis states that are energetically remote from each other. These interactions can be dealt with by $2^{\text {nd }}$ order Perturbation Theory.

A few interaction terms connect near degenerate basis states. These dominate the dynamics and give rise to "polyads"

* must be diagonalized

* can lead to local modes
* can enable isomerization
broken picture of level splittings and transition intensities

Let's look at a simple example that illustrates all of the steps.
There are two special cases.

$$
\begin{array}{lll}
\text { Fermi Resonance } & \omega_{1} \approx 2 \omega_{2} & 2: 1 \\
\text { Darling-Dennison } & 2 \omega_{1} \approx 2 \omega_{3} & 2: 2
\end{array}
$$

Symmetric stretch and anti-symmetric stretch usually have similar frequency, but one is symmetric and the other is anti-symmetric.
$Q_{1} \otimes Q_{1} \quad$ is symmetric
$Q_{3} \quad$ is anti-symmetric
$Q_{3} \otimes Q_{3} \quad$ is symmetric
\rightarrow [these 2:2 anharmonic terms lead to "local stretchers"] wave my arms

Fermi Resonance involves a cubic anharmonic term.

$$
k_{133} Q_{1} Q_{3}^{2}
$$

put this into $\mathbf{a}, \mathbf{a}^{\dagger}$ form

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left(\frac{\hbar}{2 m_{1} \omega_{1}}\right)^{1 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right) \\
& \mathrm{Q}_{3}=\left(\frac{\hbar}{2 m_{3} \omega_{3}}\right)^{1 / 2}\left(\mathbf{a}_{3}+\mathbf{a}_{3}^{\dagger}\right)
\end{aligned}
$$

Let $m_{1}=m_{3}$ (this is a bit of a fraud because the mass factors are not quite so simple)

$$
k_{133} Q_{1} Q_{3}^{2}=\left[\frac{\hbar}{2 m}\right]^{3 / 2}\left[\omega_{1} \omega_{3}^{2}\right]^{-1 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)\left(\mathbf{a}_{3}+\mathbf{a}_{3}^{\dagger}\right)^{2}
$$

Operator algebra: intermode $\left[\mathbf{a}_{i}, \mathbf{a}_{j}\right]=\left[\mathbf{a}_{i}, \mathbf{a}_{j}^{\dagger}\right]=0$

$$
\begin{aligned}
& \left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)\left(\mathbf{a}_{3}+\mathbf{a}_{3}^{\dagger}\right)=\mathbf{a}_{1}\left[\mathbf{a}_{3}^{2}+\mathbf{a}_{3}^{\dagger 2}+\left(2 N_{3}+1\right)\right] \\
& +\mathbf{a}_{1}^{\dagger}\left[\mathbf{a}_{3}^{2}+\mathbf{a}_{3}^{\dagger 2}+\left(2 N_{3}+1\right)\right] \\
& \\
& 6 \text { terms } \quad H_{n_{1}, n_{3}, n_{1}^{\prime}, n_{3}^{\prime}} \equiv\left\langle n_{1}, n_{3}\right| \mathbf{H}^{(1)}\left|n_{1}^{\prime}, n_{3}^{\prime}\right\rangle
\end{aligned}
$$

operator	$n_{1}-n_{1}^{\prime}$	$n_{3}-n_{3}^{\prime}$	$\mathbf{H}_{n_{1}, n_{3} ; n_{1}^{\prime}, n_{3}^{\prime}}^{(1)}$	$\Delta E=E_{n_{1}, n_{3}}-E_{n_{1}^{\prime}, n_{3}^{\prime}}$ $=\hbar\left[\left(n_{1}-n_{1}^{\prime}\right) \omega_{1}+\left(n_{3}-n_{3}^{\prime}\right) \omega_{3}\right]$
$\mathbf{a}_{1}, \mathbf{a}_{3}^{2}$	-1	-2	$\left(n_{1}+1\right)^{1 / 2}\left[\left(n_{3}+2\right)\left(n_{3}+1\right)^{1 / 2}\right.$	$\hbar\left[-\omega_{1}-2 \omega_{3}\right]$
$\mathbf{a}_{1}, \mathbf{a}_{3}^{\dagger 2}$	-1	+2	$\left(n_{1}+1\right)^{1 / 2}[n(n-1)]^{1 / 2}$	$\hbar\left[-\omega_{1}+2 \omega_{3}\right]$
$\mathbf{a}_{1}\left(2 \mathbf{N}_{3}+1\right)$	-1	0	$\left(n_{1}+1\right)^{1 / 2}\left[\left(2 n_{3}+1\right)\right]^{1 / 2}$	$\hbar\left[-\omega_{1}\right]$
$\mathbf{a}_{1}^{\dagger}, \mathbf{a}_{3}^{2}$	+1	-2	$\left(n_{1}\right)^{1 / 2}\left[\left(n_{3}+2\right)\left(n_{3}+1\right)\right]^{1 / 2}$	$\hbar\left[\omega_{1}-2 \omega_{3}\right]$
$\mathbf{a}_{1}^{\dagger}, \mathbf{a}_{3}^{\dagger 2}$	+1	+2	$\left(n_{1}\right)^{1 / 2}[n(n-1)]^{1 / 2}$	$\hbar\left[\omega_{1}+2 \omega_{3}\right]$
$\mathbf{a}_{1}^{\dagger}\left(2 \mathbf{N}_{3}+1\right)$	+1	0	$\left(n_{1}\right)^{1 / 2}\left[2 n_{3}+1\right]^{1 / 2}$	$\hbar\left[\omega_{1}\right]$

The two circled terms involve near degeneracy.
They require diagonalization of a near-degenerate block.
All of the other terms can be dealt with by $2^{\text {nd }}$ order non-degenerate Perturbation Theory.

OK, we are interested in all of the terms where $\omega_{1}-2 \omega_{3} \approx 0$.

Polyad \#

$$
P=\underset{\substack{\downarrow \\ 2 \text { points }}}{2 n_{1}}+n_{\substack{\downarrow \\ 1 \text { point } \\ \downarrow \\ \text { total membership of states for } \omega_{1}=2 \omega \\ \text { for } \omega_{3}=\omega}}
$$

$\mathrm{P}=0$	$(0,0)$	1
$\mathrm{P}=1$	$(0,1)$	1
$\mathrm{P}=2$	$(1,0),(0,2)$	2
$\mathrm{P}=3$	$(1,1),(0,3)$	2
$\mathrm{P}=4$	$(2,0),(1,2),(0,4)$	3
$\mathrm{P}=5$	$(2,1),(1,3),(0,5),(0,6)$	3
$\mathrm{P}=6$	$(3,0),(2,2),(1,4),(0,6)$	

We have degenerate groups of levels where all within-group matrix elements scale larger with n_{1}, n_{3} and within-group membership increases. Worse and worse!!!!! Or is it?

This amounts to increasingly strong interactions among larger groups of states. But it is consistent with a mode. NOT ERGODIC!!!

This is a dominant feature of both spectrum and dynamics.
\mathbf{k}_{133} can either make the bend softer or stiffer as the stretch increases.
We can rewrite everything so far in terms of P.

$$
\begin{aligned}
\frac{E_{p}^{(0)}}{\hbar \omega} & =2\left(n_{1}+1 / 2\right)+\left(n_{3}+1 / 2\right) \\
& =2 n_{1}+n_{3}+3 / 2=P+3 / 2
\end{aligned}
$$

even- P : states are $\left(n_{1}=\frac{P}{2}, n_{3}=0\right),\left(n_{1}=\frac{P}{2}-1, n_{3}=2\right), \ldots(0, P)$
there are $\frac{P+2}{2}$ states in polyad
odd- $P:$ states are $\left(n_{1}=\frac{P-1}{2}-1, n_{3}=1\right),\left(n_{1}=\frac{P-3}{2}, n_{3}=3\right), \ldots(0, P)$
there are $\frac{P+1}{2}$ states in polyad

This is a recipe for adding interpolyad interactions via $2^{\text {nd }}$ order Perturbation Theory.

The 133 Polyad itself:

$$
\frac{\mathbf{H}_{P}^{(0)}}{\hbar \omega}=\left(\begin{array}{cccc}
P+3 / 2 & 0 & 0 & 0 \\
0 & P+3 / 2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & P+3 / 2
\end{array}\right)
$$

$$
\frac{\mathbf{H}_{P}^{(1)}}{\text { stuff }}=\frac{P}{2}, 0 \quad \frac{P}{2}-1,2 \quad \frac{P}{2}-2,4
$$

even P

$$
\begin{align*}
& \frac{P}{2}, 0 \quad 0 \quad\left[\left(\frac{P}{2}\right)(2-1)\right] \\
& \frac{P}{2}-1,2 \\
& \text { sym } \\
& 0 \quad\left[\left(\frac{P}{2}-1\right)\right. \\
& \frac{P}{2}-2,4 \\
& \text { sym } \\
& 0 \\
& \vdots \\
& 0, P
\end{align*}
$$

$[(1)(P)(P-1)]^{1 / 2}$
sym

Van Vleck Transformation [HLB-RWF, pages 237-243]

Second-Order corrections along diagonal

$$
E_{1}^{(0)}+\frac{\mathbf{H}_{i j}^{(1) 2}}{E_{i}^{(0)}-E_{1}^{(0)}}
$$

Off diagonal

$$
\mathbf{H}_{a b}^{(1)}+\sum_{\alpha} \frac{\mathbf{H}_{a \alpha}^{(1)} \mathbf{H}_{\alpha b}^{(1)}}{\frac{E_{a}^{(0)}+E_{b}^{(0)}}{2}-E_{\alpha}^{(0)}}
$$

Intramolecular Vibrational Redistribution (IVR)

The Pluck: $\quad \Psi(\mathbf{Q}, 0)=\phi_{\{\mathbf{V}\}}^{(0)}$

$$
\begin{aligned}
& \phi_{\{\mathbf{V}\}}^{(0)} \text { expressed as a sum of } a_{\{\mathbf{V}\}} \mathcal{\Psi}_{\{\mathbf{V}\}} \\
& \Psi(\mathbf{Q}, t)=\sum_{\{\mathbf{V}\}} a_{\{\mathbf{V}\}} e^{-i E_{\{\mathbf{V}\}} t / \hbar}
\end{aligned}
$$

"Survival Probability": $\quad P=\left|\int \Psi^{*}(\mathbf{Q}, 0)^{*} \Psi(\mathbf{Q}, t) d \mathbf{Q}\right|^{2}$

how fast?
minor recurrences?

"x-k" relationships

$$
\begin{aligned}
E_{\{\mathrm{v}\}}= & \hbar \sum_{\{\mathbf{v}\}} \omega_{i}\left(n_{i}+1 / 2\right)-\sum_{\{\mathbf{v}\},\left\{\mathbf{v}^{1}\right\}} x_{i j}\left(n_{i}+1 / 2\right)\left(n_{j}+1 / 2\right) \\
& \left\{x_{i j}\right\} \leftrightarrow k_{i i j}, k_{i i i j}, k_{i i i i j}
\end{aligned}
$$

from Perturbation Theory

Polyads - a model of what is supposed to happen far above where normal modes are well known to be a bad approximation.
a "broken pattern" that extrapolates well \longrightarrow a "pattern of broken patterns"

But at high E, some normal modes are replaced by local modes.

trans-cis in S_{1} acetylene [Science 350, 1338 (2015)] acetylene-vinylidene in S_{0} acetylene [Science 358, 336 (2017)]

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

