5.73

Quiz 20 ANSWERS

1. Write the 2×2 density matrix, $\rho(\mathrm{t})$, for the time evolving state that results from

$$
|\psi(0)\rangle=2^{-1 / 2}\binom{1}{1}=2^{-1 / 2}\left[\binom{1}{0}+\binom{0}{1}\right]
$$

where $\mathbf{H}=\left(\begin{array}{ll}E_{1} & 0 \\ 0 & E_{2}\end{array}\right)$ and, for an eigenstate, $\Psi_{j}(t)=\psi_{j} \mathrm{e}^{-i E_{j} t / \hbar}$.

* what is $|\Psi(t)\rangle$?
* what is $\rho(\mathrm{t})$?

$$
\begin{aligned}
& |\Psi(t)\rangle=2^{-1 / 2}\binom{1}{0} e^{-i E_{1} t / \hbar}+2^{-1 / 2}\binom{0}{1} e^{-i E_{2} t / \hbar} \\
& \boldsymbol{\rho}(t)=\frac{1}{2}\left(\begin{array}{cc}
1 & e^{-i \omega_{12} t} \\
e^{i \omega_{12} t} & 1
\end{array}\right)
\end{aligned}
$$

2. The detector is designed to see only $\left.2^{-12}(|1\rangle-12\rangle\right)$. Write the $2 \times 2 \mathrm{D}$ matrix.
$D=\frac{1}{2}\binom{1}{-1}\left(\begin{array}{ll}1 & -1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$
3. The \mathbf{D} matrix is independent of time because the detector is not moving. But the expectation value for \mathbf{D}, the detected intensity, is time dependent because $\rho(\mathrm{t})$ contains time dependent coherence terms. Compute $\langle\mathbf{D}\rangle_{\mathrm{t}}=\operatorname{Trace}(\mathbf{D} \rho)$.

$$
\begin{aligned}
\operatorname{Trace}(D \rho) & =\frac{1}{4}\left(D_{11} \rho_{11}+D_{12} \rho_{21}+D_{21} \rho_{12}+D_{22} \rho_{22}\right) \\
& =\frac{1}{4}\left(1+-e^{i \omega_{12} t}-e^{-i \omega_{12} t}+1\right)=\frac{1}{2}\left(1-\cos \omega_{12} t\right)
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

