
 

  
 

  

  

 

 
  
   

 

 

 
 

 
   

 

 

    

5.73 Lecture #6 6 - 1 

Lecture #6: Linear V(x). JWKB Approximation and Quantization 
JWKB: Jeffreys, Wentzel, Kramers, Brillouin. 
Last time: Normalization schemes for eigenfunctions which belong to 

continuously variable eigenvalues. 
1. identities 
2. ψδk ,ψδp ,ψδE ,ψ box: different normalization schemes 
3. trick using box normalization (θ is k , p,E ) 

⎛ # states⎞⎛ # particles⎞ 
⎝ δθ ⎠⎝ δx ⎠ 

for box normalization∝L ∝1/L 

dn4. ("density of states") often needed - alternate method via JWKB next lecture 
dE 

1. V(x) = αx linear potential 
solve in momentum representation, φ(p), and take F.T. to ψ(x) → Airy functions 

2. Semi-classical (JWKB) approx. for ψ(x) 
]1/2 * p(x) = [(E − V (x))2m Classical mechanical momentum function dependence on x. 

−1/2 ⎡ i ⎤* ψ (x) = p(x) exp ± 
x
p(x′)dx′ 

⎣⎢ ∫c ⎦⎥!
envelope

 * visualize ψ(x) as plane wave with x-dependent wave vector 
* useful for evaluating stationary phase integrals (localization, causality) 

**** splicing across boundary between classical (E > V) and forbidden (E < V) regions ] Next 
lecture 

WKB Quantization Condition 
x+(E) h
∫ 

_ 
p(x′)dx′ = 

2 
(n +1 2) n = 0,1,… 

x (E) 
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5.73 Lecture #6 6 - 2 

Linear Potential. V(x) = αx 
p̂ 2 

Ĥ = + αx̂
2m 

coordinate representation momentum representation 
x̂ → x p̂ → p 
! ∂ ∂p̂ → x̂ → i!
i ∂x ∂p 

⎛ note [x,ˆ p̂ ] = i! in both ⎞ 
⎝⎜ representations - prove this?⎠⎟ 

!2 d 2 p 2 d 0 = (H − E)φ(p)Ĥ = − Ĥ = + i!α
2m dx 2 + αx 

2m dp ⎛ 2 ⎞p d0 = + i!α − E 
⎠⎟ 
φ(p)

2nd order ⎝⎜ 2m dp 
1st order - much easier! 

differential equation 

Solve in momentum representation (a sometimes useful trick) 
iSchr. Eq. dφ(p) 

= − (E − p2 2m)φ(p)
dp !α 

when you take d 

dp 

dφ 

dp 
gives constant times φ(p) Must solve for a and b 

dφ 

dp 
gives p2 times φ(p) 

Form of Solution φ(p) = Neap+bp 3 

iEplug into Schr. Eq. and identify correspondences, a = – 
!αterm-by-term, to get 
ib = 

6!αm 

φ(p) = Nexp⎡− 
i (Ep− p3 / 6m)⎤ easy? Note that, if p is real,

⎣⎢ ⎦⎥!α �(p) is oscillatory 

φ * (p)φ(p) = 1! ∴ N = 1! 
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5.73 Lecture #6 6 - 3 
Now p is an observable, so it must be real. Thus φ(p) is defined for all (real) p 
and is oscillatory in p for all p. �(p) is NEVER exponentially increasing or 
decreasing if p is real! 

IT IS STRANGE THAT φ(p) does not distinguish between classically allowed 
and forbidden regions. IS THIS REALLY STRANGE? If we allow p to be 
imaginary in order to deal with classically forbidden regions, φ(p) becomes an 
increasing or decreasing exponential. When we extend the solution to the 
Schrödinger equation into the classically forbidden region, p is imaginary and
�(p) is exponentially increasing or decreasing. 

If we insist on working in the ψ(x) picture, we must perform a Fourier 
Transform. 

ψ (x) = N ′∫ 
∞ 

eipx / !φ(p)dp 
−∞ 

⎡ ⎧ ⎫⎤∞ i ⎪ ⎪ 
ψ (x) = N ′ exp ⎨p( αx − E) + p3 / 6m⎬ dp∫−∞ ⎢

⎢ 
!α "$$$#$$$% ⎥

⎥ 
⎪ ⎪⎣ ⎩ odd function of p: O(p) ⎭⎦ 

e iθ = cos!θ + i sin!θ 
even odd 

∞ 
sinO(p)dp = 0 since sin O(p) is odd wrt p ➝ –p.∫−∞ 

⎡ ⎤∞ (αx − E)p + p3 /6m 
Solution!ψ(x ) = N ′ ∫ cos⎢ ⎥dp−∞ ⎣ !α ⎦ 

Ai(z) = π−1/2 ∫0 

∞ 
cos(s3 3 + sz)ds 

E = V (x) = αxtp 

= E / αxtp Surprise! This is a named (Airy) function and a tabulated integral 
* numerical tables for x near turning point i.e., x ≈ E/� 
* analytic “asymptotic” functions for x far from turning point. 

useful for deriving energy levels as an explicit function of 
quantum numbers and for matching wave functions across 
boundaries. 

* zeroes of Airy functions [Ai(zi)=0] and of derivatives of Airy 
functions [Ai'(z′ i)=0] are tabulated. (Useful for matching across 
center symmetry-point of potentials with definite even or odd 
symmetry.)  [Two kinds of Airy functions, Ai and Bi.] 
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5.73 Lecture #6 6 - 4 

⎛s3 ⎞ 
π−1/ 2Ai (z) = ∫∞ 

0 cos ds+ sz
3

⎜
⎝ 

⎟
⎠ 

s ≡ p(2m!α)−1/3 (if α > 0) 
for our specific problem 

⎤⎦ 
1/3 (αx − E) 

!2z ≡ 2mα
α 

⎡⎣ 

Turning point 
V(x) 

V(x) = αx α > 0 
E 

x+(E) 
x

At a turning point E = V (x+ ) = αx+∴ x+ (E) = E / α 

Problems with linear potentials: boundary conditions 

V(x) –αx +αx αx 

When there is symmetry (or 1/2 symmetry) we need to know the locations of the 
zeroes of d#ψ /#dx and ψ(x) .!"$ ! 

for even functions for odd functions 
or ∞ barrier tables of zeroes of 

See Handout.Ai (z) and A ′i (z) 
"zn" "z′ n" 

When there is no symmetry, must match or join Ai (or, more precisely, a linear 
combination of Ai and Bi) and Ai′ across boundaries, but we do not need to actually 
look at the Airy function itself near the joining point. 

4
Updated 8/13/20 8:20 AM 



 

		 

	 	 		 	 	

	 	 	

  

 

 

    

 

        

 
 

 

 

 
 
  

 

 
 
 
 

 

 

 

 

 

  
 

⎪

5.73 Lecture #6 6 - 5 

E This is not as bad as it seems because we areαx 
usually far from the turning point at an 
internal joining point and can use analytic 

x asymptotic expressions for Ai(z). 
2 linear potentials of 
different |slope|.For α > 0 there are 2 cases (classical and non-classical regions) 

(i) z ≪0 , E >V(x) classically allowed region 

⎡ ⎤ 
Ai(z)→π-1/2( −"z )−1/4 sin 

⎢2
3( −"z )

3/2 + π /4⎥⎥ asymptotic form for z ≪ 0.⎢ " 
positive x is in here⎢ phase ⎥

⎣ shift ⎦ 

* oscillatory,  but wave vector, k,  varies with x 

* Ai vanishes as x → – ∞ because of (-z)-1/4  factor 
* Bi is needed for case where Airy function must vanish as x → +∞ in classical region 

(ii) ⎧z >> 0  , E < V(x) forbidden region
⎪ 

# e
−(2/3) z 3/2 

⎪Ai(z) → ( π-1/2 /2) z! 
− 
"
1/4 
!$"$# asymptotic form for z ≫ 0. 

positive decreasing⎪ exponentialwell ⎨ 
behaved⎪*  not oscillatory, monotonic 

⎪* Ai vanishes as x → + ∞⎪ 
⎩* Bi vanishes as x → – ∞  in forbidden region⎪ 

damped damped
Cartoon wiggly exponential

V(x)
need to use numerical tables 
to define ψ(x) in this region 

| | 

The two asymptotic forms of Ai(z) are not normalized, but 
their amplitudes (& phases) can and must be matched. 
This links boundary condition at x → +∞  to boundary 
condition at x →  –∞. 
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5.73 Lecture #6 6 - 6 

NonLecture 
( | α | x + E) ⎡2m | α | ⎤

1/3 
EOTHER CASE: α < 0 → z ≡ − 

|α| ⎣ !2 ⎦ a < 0 

for this case, we need Bi(z) instead of Ai(z) x 
3/2 ⎤

Bi(z)→ π−1/2 2 
⎡ 2( )|z |−1/4 exp − z (forbidden region, z ≪0.) ⎢ ⎥ 
⎣ 3 ⎦ 

⎡2 3/2 π ⎤Bi(z)→π−1/2 |z |−1/4 cos z + (allowed region, z ≫ 0.) ⎢ ⎥ 
⎣3 4 ⎦ 

What is so great about V(x) =αx? ψ(x) seems ugly — need lookup tables, complicated solutions! 

But Ai(z) turns out to be key to generalization of quantization 
of all (well behaved) V(x)! 

These are semi-classical JWKB ψ(x) functions — They blow up near turning points (i.e. on both 
sides). The Ai(z)’s permit matching of JWKB ψ(x)s across the large gap where ψJWKB is invalid, 
ill-defined. 

(JEFFREYS) 

WENTZEL 

KRAMERS 

BRILLOUIN 

JWKB provides a way to get ψn(x) and En without solving 
differential equations or performing a Fourier Transform. 

But actually, the differential equations are easy to solve numerically.   The reason 
we care about JWKB is that it provides a basis for: 

* physical interpretation (semi-classical) 
* RKR inversion from EvJ → VJ(R). [Rydberg, Klein, Rees] 
* semi-classical quantization. 
* the link to classical mechanics is essential for wavepacket pictures. 
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5.73 Lecture #6 6 - 7 

(generalize on eikx for free particle by letting k = p(x)/!  depend explicitly on x (why does this 
not violate [x,p]=i! ?) 

⎡ i x ⎤−1/ 2 No violation because k(x) and p(x)= p(x) ′ψ JWKB !#"#$
exp⎢± ∫ p(x )dx ′⎥ are classical mechanical functions of⎣ % c ⎦ 

classical envelope x, not QM operators. 

]1/ 2 p(x) = [ 2m(E – V(x) 
phase factor: choose c to 
satisfy boundary conditions 

p(x) is pure real (classically allowed) or pure imaginary (classically forbidden). p(x) is not 
the Q.M. momentum. It is a classically motivated function of x, which has the form of thehclassical mechanical momentum and has the property that the λ = varies with x in a 

preasonable way. 

* p(x) −1/2 is probability amplitude envelope because 

1 1probability ∝ so amplitude ∝ (v is velocity) 
v v 

⎡ i ⎤* exp− p(x ′)dx ′
⎦⎥ 

is the generalization of eipx/! to non-constant V(x). ⎢! ∫c
x 

⎣ 

h*node spacing λ(x) = 
2 2p(x) 

*gives  easily identifiable stationary phase region for many wiggly integrands. 
(Both ψ’s have same λ at stationary phase point xs.p. ) 

Long Nonlecture derivation/motivation of the JWKB splice across the turning 
point, even though the JWKB functions are not valid near the turning point. 
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5.73 Lecture #6 6 - 8 
⎡ i x ⎤Try ψ(x) = N(x)exp ± ∫ p( ′ x′x )d ⎣⎢ c ⎦⎥! 

plug into Schr. Eq. and get a new differential equation that N(x) must satisfy 

d2ψ 2m (E − V(x))ψ = 02dx2 + 
! 

d2ψ 1 
2 p(x)

2 ψ = 0 ** dx2 + 
! 

x⎡ 2ip(x) ip′( x) ⎤ ⎡ i ⎤* derived 0 = 
⎣⎢
N′′ ± N′ ± N 

⎦⎥ 
exp

⎣⎢ 
± ∫ p(x′)dx′

⎦⎥in box ! ! ! c 
below 

This is a new Schr. Eq. for N(x).  Now make an approximation, to be tested later, that N″  is 
negligible everywhere. This is based on the expectation that a slowly varying V(x) will lead to a 
slowly varying N(x). 

* dψ 

dx 
= ⎡N′ ±⎣⎢ 

i 
! 

⎤ ⎡p(x) ⎦⎥ exp ±⎣⎢ 
i 
! 

x ⎤p( ′x )dx′∫c ⎦⎥ 

d2ψ 

dx2 = ⎡N′′ 
⎣⎢ 

± i 
! 

′N p ± i 
! 

Np′ ± ip 
! 
⎛⎜ N′ ±
⎝

i 
! 

⎞ ⎤ ⎡Np⎟ 
⎦⎥ 
exp ±

⎠ ⎣⎢ 
i 
! 

x∫c 
⎤p( ′x )dx′ 
⎦⎥ 

= 
⎡ 
⎢N′′ 
⎣ 

± 
2i 
! 

′N p ± 
ip′ 
! 

N − 
p2 

!2 
⎤ ⎡N⎥ exp ±⎣⎢⎦ 

i 
! 

x ⎤p( ′x )dx′∫c ⎦⎥ 

0 = 
d2ψ 

dx2 + 
p2 

!2 
⎡N exp ±⎣⎢ 

i 
! 

x∫c 
⎤p( ′x )dx′ ⎦⎥ 

0 = ⎡N′′ 
⎣⎢ 

± 
2ip(x) 
! 

N ′ ± 
ip′ 
! 

⎤ ⎡N
⎦⎥ 
exp ±⎣⎢ 

i 
! 

x ⎤p( ′x )dx′∫c ⎦⎥ 
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5.73 Lecture #6 6 - 9 

so, if we neglect ′′N , we get for the first term in [ ] 
2p ′ ′N +p N=0 

if p ≠ 0, then 2p1/2 ⎡p1/2N ′ + 
2
1 p −1/2 p N′ 

⎦⎥
⎤ = 0 

⎣⎢ 

d Np1/2 ( )
= ⎡N p′ 1/2 + 

1
2 

p −1/2 p N′ ⎤ 
dx ⎣⎢ ⎦⎥ 

d Np1/2 ( )
∴ = 0

dx 
N (x)p1/2 (x) = constant 

∴ N(x) = cp(x)−1/2 

OK, now we have a form for N(x) that we can use to tell us what conditions must be satisfied 
so that N″(x) is negligible everywhere. 

= cp −1/2 N 

dp −1/2 1 1/2 
= − 

2
p −3/2 dp p(x) = ⎡⎣2m (E −V (x))⎤⎦dx dx 

dp 1 −1/2 (−2m)dV = ⎡⎣2m (E −V (x))⎤⎦dx 2 dx 
1 

2
p −1(−2m)dV = −mp −1 dV = 

dx dx 
dp −1/2 

= p −5/2 m dV∴ 
dx 2 dx 

d 2p −1/2 m dV ⎛ 5 ⎞
⎠⎟ p

−7/2 ⎡ m dV 
⎥
⎤ + p −5/2 m d 2V = − −⎝⎜ ⎢dx2 2 dx 2 p dx ⎦ 2 dx2⎣ ! 

ignore Updated 8/13/20 8:20 AM 
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5.73 Lecture #6 6 - 10 

∴ N ′′ = c 
5 
4

m2 
2 

p−9/ 2 dV 
dx 

⎛⎜
⎝ 

⎞⎟
⎠ 

But we have made several assumptions about N″:' 

2ip N′ icm −3/2 dV * ≪ = + pN′′ 
" " dx 

ip′ icm −3/2 dV * ≪ N = − pN′′ 
" " dx 
2p 

" 
c 
2 
p+3/2 * ≪

"2 
N =N′′ 

all of this is satisfied if 

⎟ p
−3⎞

⎠ 
5 m! ⎛

⎜⎝ 
dV 

≪ 1
4 i dx 

Is this the JWKB validity condition? If it is, what does it mean? 

Spirit of JWKB: if initial JWKB approximation is not sufficiently accurate, iterate: 

p(x) → ψ0(x) (ordinary JWKB) 
ψ 0(x) → p1(x) 
p1(x) →ψ1(x) (first order JWKB) 

2 1/2 see ** Eq.d2ψ0 
⎡ !2 d2ψ 0 

⎤p1e.g. + 
!2 ψ 0 = 0 → p1 (x) = ⎢− ⎥ on p. 6-8

dx2 ⎣ ψ 0(x) dx2 ⎦ 
x−1/2 ⎡ i ⎤ 

exp ± p1 (x′)dx′ iterative improvementψ1 (x) = p1 (x) 
⎣⎢ ∫ ⎦⎥! c of accuracy 

p1(x) is not smaller than p0(x), but it has more nearly correct wiggles in it. 

END OF NONLECTURE 
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5.73 Lecture #6 6 - 11 

Resume Lecture 

−1/2 ⎡ i ⎤ψ (x) ≈ p(x) exp ± p(x′)dx′ ! ⎣⎢ ! ∫c
x 

⎦⎥ envelope 
adjustable phase shift. 

provided that d2V is negligible 
dx2 

AND 

!m dV ⎛ 
≪1 satisfied by λ(x) dp 

⎜|p|3 dx ⎝ dx #%$%& 
required for N′′(x )
to be negligible 

d
dx 

λ 
≪1⎞

⎠ 
< p(x) or ⎟ 

Next need to work out connection of ψJWKB(x) functions across 
region of x where the JWKB approx. breaks down (at turning points!). 

dλ →∞ at turning point because p(x) → 0 Looks BAD!dx 

BUT ALL IS NOT LOST — near enough to a turning point 
all potentials V(x) look like V(x)=αx! We have Airy 
functions that are solutions to the Schrödinger Equation for 
this linear potential. 

Now our job is to show that asymptotic – AIRY and 
JWKB are identical for a small region not too close and 
not too far on both sides of each turning point. 

THIS PERMITS ACCURATE SPLICING OF 
ψ(x) ACROSS TURNING POINT REGION! 
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5.73 Lecture #6 6 - 12 

I IIV(x) 
V(x) = αx 

α > 0E 
approx. linear V(x) 

a-AIRY a-AIRY 

JWKB JWKB 

a x 
Region I            E > V(x)  classical 

First use Airy 
 to splice across 

I,II junction 

I ~ π−1/2 (−z)−1/4 sin ⎡ 2 (−z)3/2 + π 4⎤ψ a−AIRY ⎦⎥ 

(αx − E ) ⎡ 2mα ⎤
1/3 

⎣⎢ 3 

z = 
α ⎣⎢ !2 ⎦⎥ 

⎡αx - E ⎤at turning point E = V(a) = αa so ⎥ = (x − a) ⎣⎢ α ⎦ 

⎛ ⎞z = (x − a)⎝⎜ 
2mα 

⎠⎟ 
1/3 

≪ 0      when x ≪ a Region I/II splice
!2 

using a-Airy. 

Region II            E < V(x)  forbidden region, z ≫ 0 

π−1/2 
)z 3/2 II z −1/4e −(2/3 ~ψ a−AIRY 2 

Now consider ψJWKB for a linear potential and show that it is identical to a-Airy! 

p(x) −1/2 ⎡ i ⎤exp ± ∫
x
p(x′)dx′ψ JWKB ~ c± ⎣⎢ ! a ⎦⎥ 

Then 
use WKB 

both c+ and c– additive terms could be present 

]1/2 p(x) ≡ [2m(E − V(x)) 

12
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5.73 Lecture #6 6 - 13 
x < a classical , p is real , ψJWKM oscillates 
x > a forbidden , p is imaginary , ψJWKB is exponential 

pretend V(x) looks linear near x = a  (ℓ-JWKB) 

]1/2 linearp(x) = [2mα(a − x) 

= (2mα)1/2 )1/2 d∫
x
p(x′)dx′ ∫

x (a − x′ x′ 
a a 

x 

= (2mα)1/2 ⎛ 2 ⎞ )3/2 − ( x′ ⎝⎜ 3⎠⎟ 
a − 

a 

= −(2mα)1/2 2
3 
(a − x)3/2 

Region I 
Iψ l−JWKB (x) ~ p(x) −1/2 ⎡⎣Ae

iθ + Be−iθ ⎤⎦ 
= p(x) −1/2 C sin(θ + φ) 

Define the JWKB phase factor, θ (x): 
1/2 21 x ⎛ 2mα ⎞ )3/2 θ = p(x′)dx′ = − (∫a ⎝⎜ !2 ⎠⎟ 3 

a − x 
! 

Now compare θ (x) to z(x) 

⎛ ⎞ 2
but, earlier ,  z = (x − a)⎜ 

2mα
⎟ 

1/3 
∴θ = − (−z)3/ 2 

⎝ !2 ⎠ 3 

)1/3 )1/2 for exponential factor∴ p = ( 2mα! ( −z 
−1/2 = (2 mα!)−1/ 6 (−z)−1/ 4 for pre-exponential factorp 

Thus, putting all of the pieces together 
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5.73 Lecture #6 6 - 14 
−|p|−1/ 2 ⎡ −θ ⎤# $% %&#%%%$%%%& ⎢ ⎥Iψ ℓ− JWKB = −( 2mα")−1/ 6 (−z)−1/ 4 C sin⎢ 

2 (−z)3 /2 − φ⎥3⎢ ⎥⎣ ⎦ 

= ψa
I 
−AIRY If C = −(2mα!)1/6 π−1/2 

φ = −π 4 

I Iψ ℓ− JWKB exactly splices onto ψa −AIRY 
with a π/4 phase factor (shifted from what the argument of sine 
would have been if one had started the phase integral at x = a 

Similar result in Region II 

II ~ Ae−f (x) + Be+ f(x) ψJWKB 
at x → + ∞ f(x) → ∞ ∴ B = 0 

II ⎡ ⎛ 2 mα⎞1/ 2 2 ⎤ 
∴ψ ℓ− JWKB = A(2mα)−1/ 4 (x − a)−1/ 4 exp⎢−⎜ ⎟ (x − a)3 /2 ⎥ 

⎢ ⎝ "2 ⎠ 3 ⎥⎣ ⎦ 
II (2mα")+1/ 6 π−1/ 2which is equal to ψa −AIRY if A = 2 

I I II IIFinal step: ψ JWKB ↔ ψa− AIRY  , ψ JWKB ↔ ψa−AIRY 

require A = –C/2 

perfect match on opposite sides of turning point. 

Ai(z) is valid in region where ψJWKB is invalid. 

The logic is complicated, but the analysis assures that matching of �I
JWKB to �II

JWKB 
is valid and that one gets an extra π/4 phase factor at each turning point in the 
classically allowed region. This corresponds to the extra phase accumulated in the 
non-classical region so that �(± ∞) → 0. The energy levels are lowered below where 
they would have been if the wavefunctions in the classically allowed region were 
zero at turning points. 
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