Lecture \#6: Linear V(x). JWKB Approximation and Quantization

JWKB: Jeffreys, Wentzel, Kramers, Brillouin.
Last time: Normalization schemes for eigenfunctions which belong to continuously variable eigenvalues.

1. identities
2. $\psi_{\delta \kappa}, \psi_{\delta \rho}, \psi_{\delta E}, \psi_{\text {box }}:$ different normalization schemes
3. trick using box normalization (θ is k, p, E)

for box normalization
4. $\frac{d n}{d E}$ ("density of states") often needed - alternate method via JWKB next lecture
$\mathrm{V}(\mathrm{x})=\alpha \mathrm{x}$ linear potential
solve in momentum representation, $\phi(p)$, and take F.T. to $\psi(x) \rightarrow$ Airy functions
Semi-classical (JWKB) approx. for $\psi(\mathrm{x})$
$p(x)=[(E-V(x)) 2 m]^{1 / 2} \quad$ Classical mechanical momentum function dependence on x.
$\psi(x)=|p(x)|^{-1 / 2} \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} \stackrel{\leftarrow}{\underset{\text { envelope }}{ }} \underset{p\left(x^{\prime}\right) d x^{\prime}}{ }\right]$

* visualize $\psi(x)$ as plane wave with x -dependent wave vector
* useful for evaluating stationary phase integrals (localization, causality)
**** splicing across boundary between classical $(\mathrm{E}>\mathrm{V})$ and forbidden $(\mathrm{E}<\mathrm{V})$ regions] Next

WKB Quantization Condition

$$
\int_{\mathrm{X}_{-}(E)}^{\mathrm{x}_{+}(E)} p\left(x^{\prime}\right) d x^{\prime}=\frac{h}{2}(n+1 / 2) n=0,1, \ldots
$$

Linear Potential. $\mathrm{V}(\mathrm{x})=\alpha \mathrm{x}$

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\alpha \hat{x}
$$

coordinate representation momentum representation

$$
\begin{array}{cc}
\hat{\mathrm{x}} \rightarrow \mathrm{x} & \hat{\mathrm{p}} \rightarrow \mathrm{p} \\
\hat{\mathrm{p}} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x} & \hat{\mathrm{x}} \rightarrow i \hbar \frac{\partial}{\partial p} \\
& \binom{\text { note }[\hat{\mathrm{x}}, \hat{\mathrm{p}}]=i \hbar \text { in both }}{\text { representations - prove this? }}
\end{array}
$$

$$
\begin{array}{ccl}
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\alpha x & \hat{H}=\frac{p^{2}}{2 m}+i \hbar \alpha \frac{d}{d p} & 0=(H-E) \phi(p) \\
\text { 2nd order } & \text { 1st order - much easier! } & 0=\left(\frac{p^{2}}{2 m}+i \hbar \alpha \frac{d}{d p}-E\right) \phi(p)
\end{array}
$$

Solve in momentum representation (a sometimes useful trick)
Schr. Eq. $\frac{\mathrm{d} \phi(\mathrm{p})}{\mathrm{dp}}=-\frac{\mathrm{i}}{\hbar \alpha}\left(\mathrm{E}-\mathrm{p}^{2} / 2 \mathrm{~m}\right) \phi(\mathrm{p})$

Form of Solution

plug into Schr. Eq. and identify correspondences, term-by-term, to get

$$
\begin{aligned}
& \mathrm{a}=-\frac{\mathrm{iE}}{\hbar \alpha} \\
& \mathrm{~b}=\frac{\mathrm{i}}{6 \hbar \alpha \mathrm{~m}}
\end{aligned}
$$

$$
\phi(p)=N \exp \left[-\frac{\mathrm{i}}{\hbar \alpha}\left(E \mathrm{p}-\mathrm{p}^{3} / 6 \mathrm{~m}\right)\right]
$$

easy? Note that, if p is real, $\phi(\mathrm{p})$ is oscillatory

$$
\phi^{*}(\mathrm{p}) \phi(\mathrm{p})=1!\quad \therefore \mathrm{N}=1!
$$

Now p is an observable, so it must be real. Thus $\phi(p)$ is defined for all (real) p and is oscillatory in p for all p . $\phi(\mathrm{p})$ is NEVER exponentially increasing or decreasing if p is real!

IT IS STRANGE THAT $\phi(\mathrm{p})$ does not distinguish between classically allowed and forbidden regions. IS THIS REALLY STRANGE? If we allow p to be imaginary in order to deal with classically forbidden regions, $\phi(p)$ becomes an increasing or decreasing exponential. When we extend the solution to the Schrödinger equation into the classically forbidden region, p is imaginary and $\phi(\mathrm{p})$ is exponentially increasing or decreasing.

If we insist on working in the $\psi(x)$ picture, we must perform a Fourier Transform.

$$
\begin{aligned}
& \psi(\mathrm{x})=\mathrm{N}^{\prime} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{ipx} / \hbar} \phi(\mathrm{p}) \mathrm{dp} \\
& \psi(\mathrm{x})=\mathrm{N}^{\prime} \int_{-\infty}^{\infty} \exp [\frac{\mathrm{i}}{\hbar \alpha}\{\underbrace{\left\{(\alpha x-\mathrm{E})+\mathrm{p}^{3} / 6 \mathrm{~m}\right.}_{\text {odd function of } \mathrm{p}: \text { O(p) })}\}] \mathrm{dp} \\
& \mathrm{e}^{i \theta}=\underbrace{\cos \theta}_{\text {even }}+i \underbrace{\sin ^{i n}}_{\text {odd }} \\
& \int_{-\infty}^{\infty} \sin O(p) d p=0 \quad \text { since } \sin O(p) \text { is odd wrt } \mathrm{p} \rightarrow-\mathrm{p} . \\
& \psi(\mathrm{x})=\mathrm{N}^{\prime} \int_{-\infty}^{\infty} \cos \left[\frac{(\alpha \mathrm{x}-\mathrm{E}) \mathrm{p}+\mathrm{p}^{3} / 6 \mathrm{~m}}{\hbar \alpha}\right] \mathrm{dp}
\end{aligned}
$$

$$
\operatorname{Ai}(z)=\pi^{-1 / 2} \int_{0}^{\infty} \cos \left(s^{3} / 3+s z\right) d s
$$

Surprise! This is a named (Airy) function and a tabulated integral $\begin{array}{r}E=V(x)=\alpha x_{t p} \\ x_{t p}=E / \alpha\end{array}$

* numerical tables for x near turning point i.e., $\mathrm{x} \approx \mathrm{E} / \alpha$
* analytic "asymptotic" functions for x far from turning point.
useful for deriving energy levels as an explicit function of quantum numbers and for matching wave functions across boundaries.
* zeroes of Airy functions $\left[\operatorname{Ai}\left(\mathrm{z}_{\mathrm{i}}\right)=0\right]$ and of derivatives of Airy functions $\left[\operatorname{Ai}^{\prime}\left(\mathrm{z}_{\mathrm{i}}^{\prime}\right)=0\right]$ are tabulated. (Useful for matching across center symmetry-point of potentials with definite even or odd symmetry.) [Two kinds of Airy functions, Ai and Bi.]

$$
\operatorname{Ai}(\mathrm{z})=\pi^{-1 / 2} \int_{0}^{\infty} \cos \left(\frac{\mathrm{s}^{3}}{3}+\mathrm{sz}\right) \mathrm{ds}
$$

$$
\text { for our specific problem } \begin{array}{ll}
s \equiv p(2 m \hbar \alpha)^{-1 / 3} \quad(\text { if } \alpha>0) \\
& z \equiv \frac{(\alpha x-E)}{\alpha}\left[2 m \alpha / \hbar^{2}\right]^{1 / 3}
\end{array}
$$

Turning point

At a turning point $\quad E=V\left(x_{+}\right)=\alpha x_{+} \therefore x_{+}(E)=E / \alpha$
X

Problems with linear potentials: boundary conditions
$\mathrm{V}(\mathrm{x})$

When there is symmetry (or $1 / 2$ symmetry) we need to know the locations of the zeroes of

When there is no symmetry, must match or join Ai (or, more precisely, a linear combination of Ai and Bi) and Ai^{\prime} across boundaries, but we do not need to actually look at the Airy function itself near the joining point.

This is not as bad as it seems because we are usually far from the turning point at an internal joining point and can use analytic asymptotic expressions for $\mathrm{Ai}(\mathrm{z})$.

For $\alpha>0$ there are 2 cases (classical and non-classical regions)

$$
\begin{align*}
& z \ll 0, E>V(x) \text { classically allowed region } \tag{i}\\
& \operatorname{Ai}(\mathrm{z}) \rightarrow \pi^{-1 / 2}(\underset{\text { positive }}{Z})^{-1 / 4} \sin [\frac{2}{3}(\underset{\text { xisi in here }}{Z})^{3 / 2}+\underbrace{\pi / 4}_{\substack{\text { phase } \\
\text { shift }}}] \quad \text { asymptotic form for } z \ll 0 .
\end{align*}
$$

* oscillatory, but wave vector, k , varies with x
* Ai vanishes as $\mathrm{x} \rightarrow-\infty$ because of $(-\mathrm{z})^{-1 / 4}$ factor
* Bi is needed for case where Airy function must vanish as $\mathrm{x} \rightarrow+\infty$ in classical region

Cartoon

NonLecture

OTHER CASE: $\alpha<0 \rightarrow \mathrm{z} \equiv-\frac{(|\alpha| x+E)}{|\alpha|}\left[2 m|\alpha| / \hbar^{2}\right]^{1 / 3}$

for this case, we need $\operatorname{Bi}(z)$ instead of $\operatorname{Ai}(z)$

$$
\begin{aligned}
& \operatorname{Bi}(z) \rightarrow\left(\pi^{-1 / 2} / 2\right)|z|^{-1 / 4} \exp \left[-\frac{2}{3}|z|^{3 / 2}\right] \quad \text { (forbidden regiol } \\
& \operatorname{Bi}(z) \rightarrow \pi^{-1 / 2}|z|^{-1 / 4} \cos \left[\frac{2}{3}|z|^{3 / 2}+\frac{\pi}{4}\right] \quad \text { (allowed region, } z \gg 0 \text {.) }
\end{aligned}
$$

What is so great about $\mathrm{V}(\mathrm{x})=\alpha \mathrm{x}$? $\Psi(\mathrm{x})$ seems ugly — need lookup tables, complicated solutions!

But Ai(z) turns out to be key to generalization of quantization of all (well behaved) $\mathrm{V}(\mathrm{x})$!

These are semi-classical JWKB $\psi(x)$ functions - They blow up near turning points (i.e. on both sides). The $\operatorname{Ai}(\mathrm{z})$'s permit matching of JWKB $\psi(\mathrm{x})$ s across the large gap where $\psi_{\text {JWKB }}$ is invalid, ill-defined.

(JEFFREYS)

WENTZEL
KRAMERS BRILLOUIN

JWKB provides a way to get $\psi_{n}(x)$ and E_{n} without solving differential equations or performing a Fourier Transform.

But actually, the differential equations are easy to solve numerically. The reason we care about JWKB is that it provides a basis for:

* physical interpretation (semi-classical)
* RKR inversion from $\mathrm{E}_{\mathrm{vJ}} \rightarrow \mathrm{V}_{\mathrm{J}}(\mathrm{R})$. [Rydberg, Klein, Rees]
* semi-classical quantization.
* the link to classical mechanics is essential for wavepacket pictures.
(generalize on $\mathrm{e}^{\mathrm{ikx}}$ for free particle by letting $\mathrm{k}=\mathrm{p}(x) / \hbar$ depend explicitly on x (why does this not violate $[\mathrm{x}, \mathrm{p}]=\mathrm{i} \hbar$?)

$$
\begin{aligned}
i \hbar & \psi_{\text {JWKB }}
\end{aligned}=\underbrace{|\mathrm{p}(\mathrm{x})|^{-1 / 2}}_{\begin{array}{c}
\text { classical envelope }
\end{array}} \exp \left[\pm \frac{\mathrm{i}}{\hbar} \int_{\mathrm{c}}^{\mathrm{x}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}\right] \begin{aligned}
& \text { No violation because } \mathrm{k}(\mathrm{x}) \text { and } \mathrm{p}(\mathrm{x}) \\
& \text { are classical mechanical functions of } \\
& \mathrm{x} \text {, not QM operators. }
\end{aligned}
$$

$p(x)$ is pure real (classically allowed) or pure imaginary (classically forbidden). $p(x)$ is not the Q.M. momentum. It is a classically motivated function of x, which has the form of the classical mechanical momentum and has the property that the $\lambda=\frac{h}{p}$ varies with x in a
reasonable way. reasonable way.

* $\quad|p(x)|^{-1 / 2}$ is probability amplitude envelope because probability $\propto \frac{1}{\mathrm{v}}$ so amplitude $\propto \sqrt{\frac{1}{\mathrm{v}}}(\mathrm{v}$ is velocity $)$
* $\exp -\left[\frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]$ is the generalization of $\mathrm{e}^{\mathrm{ipx} / \hbar}$ to non-constant $\mathrm{V}(\mathrm{x})$.
*node spacing $\frac{\lambda(x)}{2}=\frac{h}{2 p(x)}$
* gives easily identifiable stationary phase region for many wiggly integrands.
(Both ψ 's have same λ at stationary phase point $\mathrm{x}_{\text {s.p. }}$.)

Long Nonlecture derivation/motivation of the JWKB splice across the turning point, even though the JWKB functions are not valid near the turning point.
$\operatorname{Try} \psi(x)=N(x) \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]$
plug into Schr. Eq. and get a new differential equation that $N(x)$ must satisfy

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{E}-\mathrm{V}(\mathrm{x})) \psi=0 \\
& \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}^{2}}+\frac{1}{\hbar^{2}} \mathrm{p}(\mathrm{x})^{2} \psi=0
\end{aligned}
$$

**

* derived in box

$$
0=\left[N^{\prime \prime} \pm \frac{2 i p(x)}{\hbar} N^{\prime} \pm \frac{\dot{p^{\prime}(x)}}{\hbar} N\right] \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]
$$

below

This is a new Schr. Eq. for $\mathrm{N}(\mathrm{x})$. Now make an approximation, to be tested later, that $\mathrm{N}^{\prime \prime}$ is negligible everywhere. This is based on the expectation that a slowly varying $\mathrm{V}(\mathrm{x})$ will lead to a slowly varying $\mathrm{N}(\mathrm{x})$.
*

$$
\begin{aligned}
\frac{d \psi}{d x} & =\left[N^{\prime} \pm \frac{i}{\hbar} p(x)\right] \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right] \\
\frac{d^{2} \psi}{d x^{2}} & =\left[N^{\prime \prime} \pm \frac{i}{\hbar} N^{\prime} p \pm \frac{i}{\hbar} N^{\prime} p^{\prime} \pm \frac{i p}{\hbar}\left(N^{\prime} \pm \frac{i}{\hbar} N p\right)\right] \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right] \\
& =\left[N^{\prime \prime} \pm \frac{2 i}{\hbar} N^{\prime} p \pm \frac{i p^{\prime}}{\hbar} N-\frac{p^{2}}{\hbar^{2}} N\right] \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right] \\
0 & =\frac{d^{2} \psi}{d x^{2}}+\frac{p^{2}}{\hbar^{2}} N \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right] \\
0 & =\left[N^{\prime \prime} \pm \frac{2 i p(x)}{\hbar} N^{\prime} \pm \frac{i p^{\prime}}{\hbar} N\right] \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]
\end{aligned}
$$

so, if we neglect $\mathrm{N}^{\prime \prime}$, we get for the first term in [] $2 \mathrm{pN}^{\prime}+\mathrm{p}^{\prime} \mathrm{N}=0$
if $\mathrm{p} \neq 0$, then $2 \mathrm{p}^{1 / 2}\left[p^{1 / 2} N^{\prime}+\frac{1}{2} p^{-1 / 2} p^{\prime} N\right]=0$
$\frac{d\left(N p^{1 / 2}\right)}{d x}=\left[N^{\prime} p^{1 / 2}+\frac{1}{2} p^{-1 / 2} p^{\prime} N\right]$
$\therefore \frac{d\left(N p^{1 / 2}\right)}{d x}=0$
$N(x) p^{1 / 2}(x)=$ constant
$\therefore \mathrm{N}(\mathrm{x})=\mathrm{cp}(\mathrm{x})^{-1 / 2}$
OK, now we have a form for $\mathrm{N}(\mathrm{x})$ that we can use to tell us what conditions must be satisfied so that $\mathrm{N}^{\prime \prime}(\mathrm{x})$ is negligible everywhere.

$$
\begin{aligned}
N & =c p^{-1 / 2} \\
\frac{d p^{-1 / 2}}{d x} & =-\frac{1}{2} p^{-3 / 2} \frac{d p}{d x} \quad \quad p(x)=[2 m(E-V(x))]^{1 / 2} \\
\frac{d p}{d x} & =\frac{1}{2}[2 m(E-V(x))]^{-1 / 2}(-2 m) \frac{d V}{d x} \\
& =\frac{1}{2} p^{-1}(-2 m) \frac{d V}{d x}=-m p^{-1} \frac{d V}{d x} \\
\therefore \frac{d p^{-1 / 2}}{d x} & =p^{-5 / 2} \frac{m}{2} \frac{d V}{d x} \\
\frac{d^{2} p^{-1 / 2}}{d x^{2}} & =\frac{m}{2} \frac{d V}{d x}\left(-\frac{5}{2}\right) p^{-7 / 2}\left[-\frac{m}{p} \frac{d V}{d x}\right]+p^{-5 / 2} \frac{m}{2} \underbrace{\frac{d^{2} V}{d x^{2}}}_{\text {ignore }}
\end{aligned}
$$

$$
\therefore \mathrm{N}^{\prime \prime}=\mathrm{c} \frac{5}{4} \mathrm{~m}^{2} \mathrm{p}^{-9 / 2}\left(\frac{\mathrm{dV}}{\mathrm{dx}}\right)^{2}
$$

But we have made several assumptions about $\mathrm{N}^{\prime \prime}$:

$$
\begin{aligned}
& *\left|N^{\prime \prime}\right| \ll\left|\frac{2 i p}{\hbar} N^{\prime}\right|=\left|+\frac{i c m}{\hbar} p^{-3 / 2} \frac{d V}{d x}\right| \\
& *\left|N^{\prime \prime}\right| \ll\left|\frac{i p^{\prime}}{\hbar} N\right|=\left|-\frac{i c m}{\hbar} p^{-3 / 2} \frac{d V}{d x}\right| \\
& *\left|N^{\prime \prime}\right| \ll \frac{p^{2}}{\hbar^{2}} N=\frac{c}{\hbar^{2}} p^{+3 / 2}
\end{aligned}
$$

all of this is satisfied if

$$
\left|\frac{5}{4} \frac{m \hbar}{i}\left(\frac{d V}{d x}\right) p^{-3}\right| \ll 1
$$

Is this the JWKB validity condition? If it is, what does it mean?

Spirit of JWKB: if initial JWKB approximation is not sufficiently accurate, iterate:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}) \rightarrow \psi_{0}(\mathrm{x}) \\
& \psi_{0}(\mathrm{x}) \rightarrow \mathrm{p}_{1}(\mathrm{x}) \\
& \mathrm{p}_{1}(\mathrm{x}) \rightarrow \psi_{1}(\mathrm{x})
\end{aligned} \quad \quad(\text { ordinary JWKB) }
$$

$$
\begin{array}{ll}
\text { e.g. } \frac{d^{2} \psi_{0}}{d x^{2}}+\frac{p_{1}^{2}}{\hbar^{2}} \psi_{0}=0 \rightarrow p_{1}(x)=\left[-\frac{\hbar^{2}}{\psi_{0}(x)} \frac{d^{2} \psi_{0}}{d x^{2}}\right]^{1 / 2} & \begin{array}{l}
\text { see ** Eq. } \\
\text { on p. 6-8 }
\end{array} \\
\Psi_{1}(x)=\left|p_{1}(x)\right|^{-1 / 2} \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p_{1}\left(x^{\prime}\right) d x^{\prime}\right] & \begin{array}{l}
\text { iterative improvement } \\
\text { of accuracy }
\end{array}
\end{array}
$$

$\mathrm{p}_{1}(\mathrm{x})$ is not smaller than $\mathrm{p}_{0}(\mathrm{x})$, but it has more nearly correct wiggles in it.

Resume Lecture

$$
\psi(x) \approx \underbrace{|p(x)|}_{\text {envelope }}{ }^{-1 / 2} \exp \left[\pm \frac{i}{\hbar} \int_{\uparrow}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]
$$

provided that $\frac{\mathrm{d}^{2} V}{d x^{2}}$ is negligible
AND
$\underbrace{\frac{\hbar m}{|p|^{3}} \frac{d V}{d x}}<1\left(\right.$ satisfied by $\lambda(\mathrm{x})\left|\frac{\mathrm{dp}}{\mathrm{dx}}\right|<|p(x)|$ or $\left.\frac{\mathrm{d} \lambda}{\mathrm{dx}} \ll 1\right)$
required for $N^{\prime \prime}(x)$
to be negligible
Next need to work out connection of $\psi_{J W K B}(x)$ functions across region of x where the JWKB approx. breaks down (at turning points!).

$$
\left|\frac{d \lambda}{d x}\right| \rightarrow \infty \text { at turning point because } \mathrm{p}(\mathrm{x}) \rightarrow 0 \quad \text { Looks BAD! }
$$

BUT ALL IS NOT LOST - near enough to a turning point all potentials $V(x)$ look like $V(x)=\alpha x$! We have Airy functions that are solutions to the Schrödinger Equation for this linear potential.

Now our job is to show that asymptotic - AIRY and JWKB are identical for a small region not too close and not too far on both sides of each turning point.

THIS PERMITS ACCURATE SPLICING OF $\psi(\mathrm{x})$ ACROSS TURNING POINT REGION!

Region I $\mathrm{E}>\mathrm{V}(\mathrm{x})$ classical

First use Airy

$$
\psi_{\mathrm{a}-\mathrm{ARY}}^{\mathrm{I}} \sim \pi^{-1 / 2}(-z)^{-1 / 4} \sin \left[\frac{2}{3}(-z)^{3 / 2}+\pi / 4\right]
$$

to splice across $z=\frac{(\alpha x-E)}{\alpha}\left[\frac{2 m \alpha}{\hbar^{2}}\right]^{1 / 3}$
I,II junction at turning point $E=V(a)=\alpha a$ so $\left[\frac{\alpha x-E}{\alpha}\right]=(x-a)$

$$
z=(x-a)\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 3} \ll 0 \quad \text { when } x \ll a
$$

Region I/II splice using a-Airy.

Region II

$$
\mathrm{E}<\mathrm{V}(\mathrm{x}) \text { forbidden region, } \quad \mathrm{z} \gg 0
$$

$$
\psi_{a-A I R Y}^{I I} \sim \frac{\pi^{-1 / 2}}{2} z^{-1 / 4} e^{-(2 / 3) z^{3 / 2}}
$$

Now consider $\psi_{J W K B}$ for a linear potential and show that it is identical to a-Airy!

$$
\psi_{J W K B} \sim c_{ \pm}|p(x)|^{-1 / 2} \exp \left[\pm \frac{i}{\hbar} \int_{a}^{x} p\left(x^{\prime}\right) d x^{\prime}\right]
$$

Then both c_{+}and c_{-}additive terms could be present use WKB

$$
\mathrm{p}(\mathrm{x}) \equiv[2 \mathrm{~m}(\mathrm{E}-\mathrm{V}(\mathrm{x}))]^{1 / 2}
$$

$x<a \quad$ classical , $\quad \mathrm{p}$ is real, $\quad \psi_{\text {JWKM }}$ oscillates
$\mathrm{x}>\mathrm{a}$ forbidden, p is imaginary, $\psi_{\mathrm{JWKB}} \quad$ is exponential
pretend $\mathrm{V}(\mathrm{x})$ looks linear near $\mathrm{x}=\mathrm{a}$

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=[2 \mathrm{~m} \alpha(\mathrm{a}-\mathrm{x})]^{1 / 2} \\
& \begin{aligned}
\int_{a}^{x} p\left(x^{\prime}\right) d x^{\prime} & =(2 m \alpha)^{1 / 2} \int_{a}^{x}\left(a-x^{\prime}\right)^{1 / 2} d x^{\prime} \\
& =\left.(2 m \alpha)^{1 / 2}\left(-\frac{2}{3}\right)\left(a-x^{\prime}\right)^{3 / 2}\right|_{a} ^{x} \\
& =-(2 m \alpha)^{1 / 2} \frac{2}{3}(a-x)^{3 / 2}
\end{aligned}
\end{aligned}
$$

Region I

$$
\begin{aligned}
\psi_{l-J W K B}^{I}(x) & \sim|p(x)|^{-1 / 2}\left[A e^{i \theta}+B e^{-i \theta}\right] \\
& =|p(x)|^{-1 / 2} C \sin (\theta+\phi)
\end{aligned}
$$

Define the JWKB phase factor, $\theta(\mathrm{x})$:

$$
\theta=\frac{1}{\hbar} \int_{a}^{x} p\left(x^{\prime}\right) d x^{\prime}=-\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2} \frac{2}{3}(a-x)^{3 / 2}
$$

Now compare $\theta(\mathrm{x})$ to $\mathrm{z}(\mathrm{x})$

$$
\begin{aligned}
\text { but, earlier, } & \stackrel{\mathrm{z}}{\downarrow}=(\mathrm{x}-\mathrm{a})\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{1 / 3} \quad \therefore \theta=-\frac{2}{3}(-\mathrm{z})^{3 / 2} \\
\therefore & \stackrel{\mathrm{p}}{\mathrm{p}}=(2 \mathrm{~m} \alpha \hbar)^{1 / 3}(-\mathrm{z})^{1 / 2} \\
& |\mathrm{p}|^{1 / 2}=(2 \mathrm{~m} \alpha \hbar)^{-1 / 6}(-\mathrm{z})^{-1 / 4} \quad \text { for exponential factor }
\end{aligned}
$$

Thus, putting all of the pieces together

$$
\begin{aligned}
\psi_{\ell-\mathrm{JWKB}}^{\mathrm{I}} & =\overbrace{-(2 \mathrm{~m} \alpha \hbar)^{-1 / 6}(-\mathrm{z})^{-1 / 4}}^{-|\mathrm{p}|^{-1 / 2}} \mathrm{C} \sin [\overbrace{\frac{2}{3}(-\mathrm{z})^{3 / 2}}^{-\theta}-\phi] \\
= & \psi_{\mathrm{a}-\text { AIRY }}^{\mathrm{I}} \quad \begin{array}{l}
\text { If } \mathrm{C}=-(2 \mathrm{~m} \alpha \hbar)^{1 / 6} \pi^{-1 / 2} \\
\phi=-\pi / 4
\end{array}
\end{aligned}
$$

$\psi_{\ell-\text { JWKB }}^{\text {I }}$ exactly splices onto $\psi_{\mathrm{a} \text {-AIRY }}^{\mathrm{I}}$
with a $\pi / 4$ phase factor (shifted from what the argument of sine would have been if one had started the phase integral at $\mathrm{x}=\mathrm{a}$

Similar result in Region II

$$
\begin{aligned}
& \psi_{\mathrm{JWKB}}^{\mathrm{II}} \sim \mathrm{Ae}^{-\mathrm{f}(\mathrm{x})}+\mathrm{Be}^{+\mathrm{f}(\mathrm{x})} \\
& \text { at } \mathrm{x} \rightarrow+\infty \quad \mathrm{f}(\mathrm{x}) \rightarrow \infty \quad \therefore \mathrm{B}=0 \\
& \therefore \psi_{\ell-\mathrm{JWKB}}^{\mathrm{II}}=\mathrm{A}(2 \mathrm{~m} \alpha)^{-1 / 4}(\mathrm{x}-\mathrm{a})^{-1 / 4} \exp \left[-\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{1 / 2} \frac{2}{3}(\mathrm{x}-\mathrm{a})^{3 / 2}\right] \\
& \text { which is equal to } \psi_{\mathrm{a}-\text { IIR }}^{\mathrm{II}} \text { if } \mathrm{A}=(2 \mathrm{~m} \alpha \hbar)^{+1 / 6} \pi^{-1 / 2} / 2
\end{aligned}
$$

Final step: $\quad \psi_{\text {JWKB }}^{\mathrm{I}} \leftrightarrow \psi_{\mathrm{a}-\mathrm{AIRY}}^{\mathrm{I}}, \quad \psi_{\mathrm{JWKB}}^{\mathrm{II}} \leftrightarrow \psi_{\mathrm{a}-\mathrm{AIRY}}^{\mathrm{II}}$
require $\mathrm{A}=-\mathrm{C} / 2$
perfect match on opposite sides of turning point.
$\mathrm{Ai}(\mathrm{z})$ is valid in region where $\psi_{\text {JWKB }}$ is invalid.
The logic is complicated, but the analysis assures that matching of $\Psi_{{ }_{J W K B}}{ }^{\text {to }} \Psi^{\mathrm{II}}{ }_{\text {JWKB }}$ is valid and that one gets an extra $\pi / 4$ phase factor at each turning point in the classically allowed region. This corresponds to the extra phase accumulated in the non-classical region so that $\Psi(\pm \infty) \rightarrow 0$. The energy levels are lowered below where they would have been if the wavefunctions in the classically allowed region were zero at turning points.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

