Quiz 17 ANSWERS

1.

$$
\begin{array}{ll}
\psi_{V_{1} V_{2}}^{(0)}=\phi_{v_{1}}\left(x_{1}\right) \phi_{v_{2}}\left(x_{2}\right) & \\
E_{v_{1} V_{2}}^{(0)}=\hbar\left[\omega_{1}\left(v_{1}+1 / 2\right)+\omega_{2}\left(v_{2}+1 / 2\right)\right] & \\
\mathbf{H}^{(1)}=k_{122} x_{1} x_{2}^{2} & \mathbf{H}_{n_{1} k_{1} n_{2} k_{2}}^{(1)}=k_{122}\left\langle n_{1}\right| x_{1}\left|k_{1}\right\rangle\left\langle n_{2}\right| x_{2}^{2}\left|k_{2}\right\rangle \\
\mathbf{x}_{1}=\left(\frac{m_{1} \omega_{1}}{2 \hbar}\right)^{1 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right) & \\
\mathbf{x}_{2}=\left(\frac{m_{2} \omega_{2}}{2 \hbar}\right)^{1 / 2}\left(\mathbf{a}_{2}+\mathbf{a}_{2}^{\dagger}\right) &
\end{array}
$$

A. Matrix elements of $\mathbf{H}^{(1)}$ have four indices, n_{1} and k_{1} specify the final and initial state quantum numbers for oscillator \#1, n_{2} and k_{2} the final and initial state quantum numbers for oscillator \#2. What are the selection rules for nonzero matrix elements of $\mathbf{H}^{(1)}$?

$$
n_{1}-k_{1}= \pm 1
$$

$$
n_{2}-k_{2}=0, \pm 2
$$

B. What are the zero-order energy differences that correspond to each of the nonzero matrix elements of $\mathbf{H}_{n_{1} k_{1} n_{2} k_{2}}^{(1)}$?

$$
E_{n_{1} n_{2}}^{(0)}-E_{k_{1} k_{2}}^{(0)}=\hbar\left[\omega_{1}\left(\widehat{n_{1}-k_{1}}\right)+\omega_{2}\left(\widehat{n_{2}-k_{2}}\right)\right]
$$

C. Evaluate at least two of the six nonzero values of the off-diagonal elements of $\mathbf{H}^{(1)}$.
(i) e.g. $\mathbf{H}_{n_{1} n_{1}+1 n_{2} n_{2}+2}=\gamma\left[\left(n_{1}+1\right)\left(n_{2}+2\right)\left(n_{2}+1\right)\right]^{1 / 2}$
(ii) $\quad \mathbf{H}_{n_{1} n_{1}+1 n_{2} n_{2}}=\gamma\left[\left(n_{1}+1\right)^{1 / 2}\left(2 n_{2}+1\right)\right]$

DO THIS ONE!
(iii) $\left.\quad \mathbf{H}_{n_{1} n_{1}+1 n_{2} n_{2}-2}=\gamma\left[\left(n_{1}+1\right)\left(n_{2}\right)\left(n_{2}-1\right)\right]\right]^{1 / 2}$
(iv) $\quad \mathbf{H}_{n_{1} n_{1}-1 n_{2} n_{2}+2}=\gamma\left[n_{1}\left(n_{2}+2\right)\left(n_{2}+1\right)\right]^{1 / 2}$
(v) $\quad \mathbf{H}_{n_{1} n_{1}-1 n_{2} n_{2}}=\gamma\left[n_{1}^{1 / 2}\left(2 n_{2}+1\right)\right]$
(vi) $\quad \mathbf{H}_{n_{1} n_{1}-1 n_{2} n_{2}-2}=\gamma\left[\left[n_{1} n_{2}\left(n_{2}-1\right)\right]^{1 / 2}\right.$
where $\gamma \equiv\left(\frac{m_{1} \omega_{1}}{2 \hbar}\right)^{1 / 2}\left(\frac{m_{2} \omega_{2}}{2 \hbar}\right)^{1}$.
D. The term $\frac{\left|\mathbf{H}_{n_{1} n_{1}+n_{2} n_{2}-2}^{(1)}\right|^{2}}{E_{n_{1} n_{2}}^{(0)}-E_{n_{1}+1 n_{2}-2}^{(0)}}$
appears in the second-order perturbation summation for $E_{n_{1} n_{2}}^{(2)}$.
Evaluate this term (based on your answers to parts B and C(iii)).

$$
\frac{\gamma^{2}\left(n_{1}+1\right)\left(n_{2}\right)\left(n_{2}-1\right)}{\hbar\left(2 \omega_{2}-\omega_{1}\right)}
$$

E. What happens to the term in part D if $\omega_{1}=2 \omega_{2}$?

Blows up!

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

