End of Matrix Solution of H-O, and Feel the Power of the a and \mathbf{a}^{\dagger} Operators

1. starting from $\mathbf{H}=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} k \mathbf{x}^{2}$ and $[\mathbf{x}, \mathbf{p}]=i \hbar$
2. we showed $p_{n m}=\frac{m}{i \hbar} x_{n m}\left(E_{m}-E_{n}\right)$

$$
\begin{aligned}
& x_{n m} \\
&=\frac{i}{\hbar k} p_{n m}\left(E_{m}-E_{n}\right) \\
& \therefore x_{n n}=0, p_{n n}=0 \text { and }\left\{\begin{array}{c}
x_{n m} \\
p_{n m}
\end{array}\right\}=0 \text { if } E_{n}=E_{m}
\end{aligned}
$$

3. $x_{n m}^{2}=-\frac{1}{k m} p_{n m}^{2}$

$$
E_{m}-E_{n}= \pm \hbar \omega \quad \omega=(k / m)^{1 / 2}
$$

\therefore the only non-zero \mathbf{x} and \mathbf{p} elements are between states whose E^{\prime} s differ by $\pm \hbar \omega$
4. combs of connected states, "block diagonalization" of $\mathbf{H}, \mathbf{x}, \mathbf{p}, \mathbf{x}^{2}, \mathbf{p}^{2}: E_{n}^{(i)}=\hbar \omega n+\varepsilon_{i}$
5. lowest index must exist because lowest E must exist. Call this index 0

$$
\begin{array}{cc}
\left|x_{01}\right|^{2}=\frac{\hbar}{2}(k m)^{-1 / 2} \\
\left|p_{01}\right|^{2}=\frac{\hbar}{2}(k m)^{+1 / 2}
\end{array} \begin{array}{r}
\text { from arbitrary (but almost universally chosen) phase choice } \\
x_{01}=+i(k m)^{-1 / 2} p_{01} \\
\hline
\end{array}
$$

Today
6. Recursion Relationship: $\quad\left|x_{n n+1}\right|^{2}$ in terms of $\left|\mathrm{x}_{\mathrm{nn}-1}\right|^{2}$
general matrix elements $\left|x_{n n+1}\right|^{2},\left|p_{n n+1}\right|^{2}$
7. general \mathbf{x} and \mathbf{p} elements
8. the only blocks of \mathbf{H} correspond to $\varepsilon_{\mathrm{i}}=\frac{1}{2} \hbar \omega$

We are ready to derive a powerful, compact, and intuitive algebra:
Dimensionless $\underset{\sim}{\mathbf{x}}, \underset{\sim}{\mathbf{p}}, \underset{\sim}{\mathbf{H}}$ and \mathbf{a} (annihilation) and \mathbf{a}^{\dagger} (creation) operators.
phase ambiguity: we can specify absolute phase of \mathbf{x} or \mathbf{p} BUT NOT BOTH because that would affect the value of $[\mathbf{x}, \mathbf{p}]$
BY CONVENTION:
matrix elements of \mathbf{x} are REAL
p are IMAGINARY
$\operatorname{try} \quad x_{01}=+i(k m)^{-1 / 2} p_{01}$ and plug this into

$$
\mathrm{x}_{01} p_{01}^{*}-p_{01} x_{01}^{*}=i \hbar
$$

$$
\text { get } \begin{aligned}
&\left|x_{01}\right|^{2} \\
&=\frac{\hbar}{2}(k m)^{-1 / 2} \\
&\left|p_{01}\right|^{2}=\frac{\hbar}{2}(k m)^{+1 / 2}
\end{aligned}
$$

$\left[\begin{array}{l}\text { If we had chosen } x_{01}=-i(k m)^{-1 / 2} p_{01} \text { we would have } \\ \text { obtained }\left|\mathrm{x}_{01}\right|^{2}=-\frac{\hbar}{2}(k m)^{1 / 2} \text { which is impossible! }\end{array}\right]$
check for self-consistency of seemingly arbitrary phase choices at every opportunity: * Hermiticity $\quad\left(\mathbf{A}^{\dagger}=\mathbf{A}, \quad A_{i j}^{*}=A_{j i}\right)$

$$
\text { * }\left.\quad\right|^{2} \geq 0 \text { for any } A_{i j}
$$

6. Recursion Relation for $\left|x_{i i+1}\right|^{2}$
start again with general equation derived in part \#3 of Lecture \#12 using the phase choice that worked

c.c. of both sides
index decreasing

$$
\therefore \quad x_{n n \pm 1}= \pm i(k m)^{-1 / 2} p_{n n \pm 1}
$$

now the arbitrary part of the phase ambiguity in the relationship between \mathbf{x} and \mathbf{p} is eliminated

Apply this to the general term in $[\mathbf{x}, \mathbf{p}] \Rightarrow$ algebra

NONLECTURE : from four terms in $[\mathbf{x}, \mathbf{p}]=i \hbar$

$$
\begin{aligned}
& x_{n n+1} p_{n+1 n}=x_{n n+1} p_{n n+1}^{*}=x_{n n+1}\left(-\frac{(k m)^{1 / 2}}{i} x_{n n+1}^{*}\right) \\
&=\left|x_{n n+1}\right|^{2}\left(+i(k m)^{1 / 2}\right) \\
&-p_{n n+1} x_{n+1 n}=-\left(\frac{(k m)^{1 / 2}}{i} x_{n n+1}\right)\left(x_{n n+1}^{*}\right)=\left|x_{n n+1}\right|^{2}\left(+i(k m)^{1 / 2}\right) \\
& x_{n n-1} p_{n-1 n}=x_{n n-1} p_{n n-1}^{*}=x_{n n-1}\left(+\frac{(k m)^{1 / 2}}{i} x_{n n-1}^{*}\right) \\
&=\left|x_{n n-1}\right|^{2}\left(-i(k m)^{1 / 2}\right) \\
&-p_{n n-1} x_{n-1 n}=-\left(-\frac{(k m)^{1 / 2}}{i} x_{n n-1}\right)\left(x_{n n-1}^{*}\right)=\left|x_{n n-1}\right|^{2}\left(-i(k m)^{1 / 2}\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
\therefore & i \hbar=2 i(k m)^{1 / 2}\left[\left|x_{n n+1}\right|^{2}-\left|x_{n n-1}\right|^{2}\right] & \\
& \left|x_{n n+1}\right|^{2}=\frac{\hbar(k m)^{-1 / 2}}{2}+\left|x_{n n-1}\right|^{2} & \begin{array}{r}
\text { recursion } \\
\text { relation }
\end{array} \\
& \text { but }\left|x_{01}\right|^{2}=\left|x_{10}\right|^{2}=\frac{\hbar}{2}(k m)^{-1 / 2} &
\end{array}
$$

thus

$$
\begin{aligned}
& \left|x_{n n+1}\right|^{2}=(n+1) \frac{\hbar}{2}(k m)^{-1 / 2} \\
& \left|p_{n n+1}\right|^{2}=(n+1) \frac{\hbar}{2}(k m)^{+1 / 2}
\end{aligned}
$$

general result

5.73 Lecture \#13

7. Magnitudes and Phases for $x_{n n+1}$ and $p_{n n \pm 1}$
verify phase consistency and Hermiticity for \mathbf{x} and \mathbf{p}

$$
\text { in \#3 we derived } x_{n n \pm 1}= \pm i(k m)^{-1 / 2} p_{n n \pm 1}
$$

one self-consistent set is
matrix elements of \mathbf{x} real and positive

$$
\left[\begin{array}{l}
x_{n n+1}=+(n+1)^{1 / 2}\left(\frac{\hbar}{2(k m)^{1 / 2}}\right)^{1 / 2}=+x_{n+1 n} \\
x_{n n-1}=+(n)^{1 / 2}\left(\frac{\hbar}{2(\mathrm{~km})^{1 / 2}}\right)^{1 / 2}=+x_{n n-1} \quad(\mathrm{~km})^{1 / 2}=m \omega
\end{array}\right.
$$

AND

$$
\begin{aligned}
& \begin{array}{l}
\text { matrix elements } \\
\text { of } \mathbf{p} \text { imaginary } \\
\text { with sign flip for } \\
\text { up vs. down }
\end{array} \\
& p_{n n-1}=+i(n)^{1 / 2}\left(\frac{\hbar(k m)^{1 / 2}}{2}\right)^{1 / 2}=-p_{n-1 n}
\end{aligned}
$$

8. Possible existence of noncommunicating blocks along diagonal of $\mathbf{H}, \mathbf{x}, \mathbf{p}$
you show that $H_{n m}=(n+1 / 2) \hbar\left(\frac{k}{m}\right)^{1 / 2} \delta_{n m}$ $\binom{$ note that \mathbf{x}^{2} and \mathbf{p}^{2} have non-zero $\Delta \mathrm{n}= \pm 2$ elements but }{$\frac{1}{2} k \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 m}$ has cancelling contributions in $\Delta \mathrm{n}= \pm 2$ locations }

This result implies

* all of the possibly independent blocks in $\mathbf{x}, \mathbf{p}, \mathbf{H}$ are identical
* $\quad \varepsilon_{i}=(1 / 2) \hbar \omega$ for all i
* degeneracy of all E_{n} ? all are the same, but can't prove that this universal degeneracy is 1 .

Creation and Annihilation Operators (CTDL pages 488-508)

* Dimensionless operators
* simple operator algebra rather than complicated real algebra
* matrices arranged according to "selection rules"
* matrix elements calculated by extremely simple rules
* automatic generation of any basis function by repeated operations on lowest (nodeless) basis state

Get rid of system-specific factors k, μ, ω and also \hbar.

$$
\begin{aligned}
& \omega=(k / m)^{1 / 2} \\
& \begin{aligned}
& \text { dimensionless } \underset{\sim}{\underset{\sim}{\mathbf{x}}} \\
& \underset{\sim}{\mathbf{p}} \equiv\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \stackrel{\mathbf{x}}{\uparrow} \text { regular } \\
&\text { choose these })^{-1 / 2} \mathbf{p}
\end{aligned} \\
& \text { We choose these } \\
& \text { factors to make } \\
& \text { everything come } \\
& \text { out dimensionless. } \\
& \underset{\sim}{\mathbf{H}}=\frac{1}{\hbar \omega} \mathbf{H}=\frac{1}{2}\left(\underset{\sim}{{\underset{\sim}{x}}^{2}}+{\underset{\sim}{\mathbf{p}}}^{2}\right) \\
& \mathbf{x}^{2}=\left(\frac{\hbar}{m \omega}\right){\underset{\sim}{x}}^{2} \\
& \mathbf{p}^{2}=\hbar m \omega{\underset{\sim}{p}}^{2} \\
& \mathbf{H}=\frac{1}{2} k \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 m}=\frac{1}{2} \hbar \omega\left({\underset{\sim}{\mathbf{x}}}^{2}+{\underset{\sim}{\mathbf{p}}}^{2}\right) \\
& \frac{1}{2} k\left(\frac{\hbar}{m \omega}\right)=\frac{1}{2} \frac{k}{m} \frac{\hbar}{\omega}=\frac{\omega^{2}}{2} \frac{\hbar}{\omega}=\frac{\hbar \omega}{2} \\
& \frac{1}{2 m}(\hbar m \omega)=\frac{1}{2} \hbar \omega \\
& {[\underset{\sim}{\mathbf{x}}, \underset{\sim}{\mathbf{p}}]=\left(\frac{m \omega}{\hbar} \frac{1}{\hbar m \omega}\right)^{1 / 2}[\mathbf{x}, \mathbf{p}]=\frac{1}{\hbar}(i \hbar)=i} \\
& \text { from results for } \mathbf{x}, \mathbf{p}, \mathbf{H}
\end{aligned}
$$

$$
\begin{array}{ll}
{\underset{\sim}{m n}}^{x_{m n}}=2^{-1 / 2}\left[(n+1)^{1 / 2} \delta_{m n+1}+n^{1 / 2} \delta_{m n-1}\right] & \begin{array}{l}
\text { square root of } \\
\text { larger quantum }
\end{array} \\
\text { number }
\end{array}{\underset{\sim}{m n}}_{p_{m n}=2^{-1 / 2} i\left[(n+1)^{1 / 2} \delta_{m n+1}-n^{1 / 2} \delta_{m n-1}\right]} \begin{array}{ll}
{\underset{\sim}{m}}_{m n}=(n+1 / 2) \delta_{m n} & \text { diagonal } \\
\text { Kronecker - } \delta^{\prime} \text { s specify selection rules for all nonzero matrix elements }
\end{array}
$$

$$
\begin{aligned}
& \mathbf{a}=2^{-1 / 2}(\underset{\sim}{\mathbf{x}}+i \underset{\sim}{\mathbf{p}}) \\
& \mathbf{a}^{\dagger}=2^{-1 / 2}(\underset{\sim}{\mathbf{x}}-i \underset{\sim}{\mathbf{p}})
\end{aligned} \quad \longrightarrow \begin{aligned}
& \underset{\sim}{\mathbf{x}}=2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \\
& \underset{\sim}{\mathbf{p}}=2^{-1 / 2} i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)
\end{aligned}
$$

Let's examine the matrix elements of \mathbf{a} and \mathbf{a}^{\dagger}

$$
\begin{aligned}
a_{m n} & =\left[2^{-1 / 2} \underset{\sim}{\underset{m n}{x}}+2^{-1 / 2} \underset{\sim}{\underset{\sim}{p}} \underset{m n}{ }\right] \\
& =\left[\frac{1}{2}(n+1)^{1 / 2} \delta_{m n+1}-\frac{1}{2}(n+1)^{1 / 2} \delta_{m n+1}+\frac{1}{2} n^{1 / 2} \delta_{m n-1}+\frac{1}{2} n^{1 / 2} \delta_{m n-1}\right]
\end{aligned}
$$

group terms according to "selection rule"

$a_{m n}=n^{1 / 2} \delta_{m n-1}$
similarly

$$
a_{m n}^{\dagger}=(n+1)^{1 / 2} \delta_{m n+1}
$$

the first (left) index is one smaller than the second (right)

a is lowering or "annihilation" operator $a_{m n}^{\dagger}=\langle m| \mathbf{a}^{\dagger}|n\rangle=(n+1)^{1 / 2}$
the first index is one larger than the second \mathbf{a}^{\dagger} is a "creation" operator

	columns			
0	1	2	3	4
0 (0	0	0	0	0
$11^{1 / 2}$	0	0	0	0
$\mathbf{a}^{\dagger}=2 \quad 0$		0	0	0
rows 30		(3)	0	0
40	0	0	$4^{1 / 2}$	0

Square root of integers always only one step below main diagonal. a, \mathbf{a}^{\dagger} are obviously not Hermitian!

$$
\mathbf{a}=\left(\begin{array}{ccccc}
0 & 1^{1 / 2} & 0 & 0 & 0 \\
0 & 0 & 2^{1 / 2} & 0 & 0 \\
0 & 0 & 0 & 3^{1 / 2} & 0 \\
0 & 0 & 0 & 0 & 4^{1 / 2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Square root of integers always only one step above main diagonal.
e.g. $\langle 3| \mathbf{a}|4\rangle=4^{1 / 2}$ a lowers

What is so great about $\mathbf{a}, \mathbf{a}^{\dagger}$?
a $|n\rangle=n^{1 / 2}|n-1\rangle \quad$ annihilates 1 quantum
$\mathbf{a}^{\dagger}|n\rangle=(n+1)^{1 / 2}|n+1\rangle \quad$ creates 1 quantum
$|n\rangle=[n!]^{-1 / 2}\left(\mathbf{a}^{\dagger}\right)^{n}|0\rangle$ generate any state, $|n\rangle$, from the lowest state, $|0\rangle$
needed to normalize. Each application of \mathbf{a}^{\dagger} gives the next larger integer. Do it n times on $|0\rangle$, get $n!|n\rangle$.

More tricks: look at $\mathbf{a a}^{\dagger}$ and $\mathbf{a}^{\dagger} \mathbf{a}$
is $\mathbf{a a}^{\dagger}$ Hermitian?
$\left[(\mathbf{A B})^{\dagger}=\mathbf{B}^{\dagger} \mathbf{A}^{\dagger}\right]$ definition of Hermitian

$$
\left(\mathbf{a a}^{\dagger}\right)^{\dagger}=\mathbf{a}^{\dagger \dagger} \mathbf{a}^{\dagger}=\mathbf{a} \mathbf{a}^{\dagger}
$$

$\therefore \mathbf{a a}^{\dagger}$ and $\mathbf{a}^{\dagger} \mathbf{a}$ are Hermitian - to what "observable" quantity do they correspond? We will see that one of these is called the "number operator."

$$
\begin{aligned}
& \mathbf{a a}^{\dagger}=\frac{1}{2}(\underset{\sim}{\mathbf{x}}+i \underset{\sim}{\mathbf{p}})(\underset{\sim}{\mathbf{x}}-i \underset{\sim}{\mathbf{p}})=\frac{1}{2}\left({\underset{\sim}{x}}^{2}+i \underset{\sim}{\mathbf{p}} \underset{\sim}{\mathbf{x}}-i \underset{\sim}{\mathbf{x}} \mathbf{\sim}+\mathbf{p}_{\sim}^{2}\right) \\
& =\frac{1}{2}(\mathbf{x}^{2}+{\underset{\sim}{\mathbf{p}^{2}}}^{i[\underbrace{[\mathbf{x}, \mathbf{p}}_{i}]})=\frac{1}{2}\left(\mathbf{x}^{2}+\mathbf{p}_{\sim}^{2}+1\right)
\end{aligned}
$$

similarly $\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2}\left(\underline{\underline{\mathbf{x}}}^{2}+\underline{\underline{p}}^{2}-1\right)$

$$
\left.\begin{array}{l}
\therefore \mathbf{H}=\frac{1}{2}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) \text { and }\left[\mathbf{a}^{\dagger} \mathbf{a}^{\dagger}\right]=1 \\
\underset{\sim}{\mathbf{H}}=\mathbf{a}^{\dagger} \mathbf{a}+1 / 2
\end{array}\right) \text { simple form for } \underset{\mathbf{H}}{ }
$$

$\underset{\sim}{\mathrm{H}}$ is the number operator $+1 / 2$

$$
\begin{gathered}
\mathbf{H}=\hbar \omega \mathbf{H}=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+1 / 2\right) \\
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=n|n\rangle \quad \begin{array}{c}
\text { quanta } \\
\text { quant } \\
\mathbf{a}^{\dagger} \mathbf{a}
\end{array} \text { is "number operator" } \\
\quad\left[\mathbf{a a}^{\dagger}|n\rangle=(n+1)|n\rangle\right] \text { not as useful }
\end{gathered}
$$

What have we done? We have exposed all of the "symmetry" and universality of the $\mathrm{H}-\mathrm{O}$ basis set. We can now trivially work out what the matrix for any $\mathbf{x}^{\mathrm{n}} \mathbf{p}^{\mathrm{m}}$ operator looks like and organize it according to selection rules.

What about \mathbf{x}^{3} ?

$$
\begin{array}{rlrl}
\mathbf{x}^{3} & =\left(\frac{m \omega}{\hbar}\right)^{-3 / 2} \underline{x}^{3} & \begin{array}{l}
\text { When you multiply this out, } \\
\text { preserve the order of } \mathbf{a} \text { and } \mathbf{a}^{\dagger}
\end{array} \\
\text { factors. } \\
\mathbf{x}^{3} & =\left(2^{-3 / 2}\right)\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{3} & \\
& =\left(2^{-3 / 2}\right)\left[\mathbf{a}^{3}+\left(\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right)+\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right)+\mathbf{a}^{\dagger^{3}}\right] \\
\Delta n & =\quad-3, & +1,
\end{array}
$$

Simplify each group using commutation properties so that it has form

$$
\begin{array}{ccc}
\mathbf{a}\left[\mathbf{a}^{\dagger} \mathbf{a}\right]|n\rangle & \text { or } & \mathbf{a}^{\dagger}\left[\mathbf{a}^{\dagger} \mathbf{a}\right]|n\rangle \\
\Downarrow & \Downarrow \\
n^{1 / 2} n|n-1\rangle & (n+1)^{1 / 2} n|n+1\rangle
\end{array}
$$

NONLECTURE: Simplify the $\Delta \mathrm{n}=-1$ terms.

$$
\begin{aligned}
& \mathbf{a}^{\dagger} \mathbf{a a}=\mathbf{a a}^{\dagger} \mathbf{a} \underbrace{-\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a a}}_{\left.\mathbf{a}^{\dagger}, \mathbf{a}\right] \mathbf{a}=-\mathbf{a}}=\mathbf{a a}^{\dagger} \mathbf{a}-\mathbf{a} \\
& \mathbf{a a a}^{\dagger}=\mathbf{a a}^{\dagger} \mathbf{a} \underbrace{-\mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a a ^ { \prime }}}_{\mathbf{a}\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{a}}=\mathbf{a a ^ { \dagger }} \mathbf{a}+\mathbf{a}
\end{aligned}
$$

NONLECTURE: Simplify the $\Delta \mathrm{n}=+1$ terms.

$$
\begin{aligned}
& \mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a a ^ { \dagger }} \underbrace{-\mathbf{a}^{\dagger}}_{\left[\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}=\mathbf{a}^{\dagger}\right.}=\mathbf{a}^{\dagger} \mathbf{a}{ }^{\dagger}+\mathbf{a}^{\dagger} \\
& \mathbf{a}^{\dagger} \mathbf{a a ^ { \dagger }}=\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a} \underbrace{\mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}}_{\mathbf{a}^{\dagger}\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{a}^{\dagger}}=\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \\
& {\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]=3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger}}
\end{aligned}
$$

add and subtract the term needed to reverse order

$$
\left[\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a a}^{\dagger}\right]=3 \mathbf{a a}^{\dagger} \mathbf{a} \quad \text { try to put everthing into } \mathbf{a a}^{\dagger} \mathbf{a} \text { order }
$$

$\underline{\Delta n=} \pm 3$

$$
\begin{aligned}
\mathbf{a}^{3}|n\rangle & =[n(n-1)(n-2)]^{1 / 2}|n-3\rangle \\
\mathbf{a}^{\dagger 3}|n\rangle & =[(n+1)(n+2)(n+3)]^{1 / 2}|n+3\rangle
\end{aligned}
$$

$\Delta \mathrm{n}= \pm 1$

$$
\begin{aligned}
{\left[\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right]|n\rangle } & =3\left(n^{3 / 2}\right)|n-1\rangle \\
{\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]|n\rangle } & =3\left[(n+1)^{1 / 2} n|n+1\rangle+(n+1)^{1 / 2}|n+1\rangle\right] \\
& =3(n+1)^{1 / 2}(n+1)|n+1\rangle \\
& =3(n+1)^{3 / 2}|n+1\rangle
\end{aligned}
$$

no need to do matrix multiplication. Just play with $\mathbf{a}, \mathbf{a}^{\dagger}$ and the $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]$ commutation rule and the $\mathbf{a}^{\dagger} \mathbf{a}$ number operator

"Second Quantization"

$$
\begin{aligned}
& \mathbf{x}_{m n}^{3}=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left[\delta_{m n+3} \quad \text { same as }|\mathrm{n}+3\rangle\langle\mathrm{n}|\right. \\
& \begin{array}{lll}
+\delta_{m n+1} 3(n+1)^{3 / 2} & \longleftarrow & |n+1\rangle\langle n| \\
+\delta_{m n-1} 3 n^{3 / 2} & \longleftarrow & |n\rangle\langle n-1|
\end{array} \\
& \left.+\delta_{m n-3}(n(n-1)(n-2))^{1 / 2}\right] \quad \text { simple! } \mathbf{x}^{3} \text { is arranged into four } \\
& \text { separate terms, each with its } \\
& \text { own explicit selection rule. } \\
& \text { * } \quad V(x)=\frac{1}{2} k \mathbf{x}^{2}+\underbrace{a \mathbf{x}^{3}+b \mathbf{x}^{4}}_{\text {anharmo }} \\
& \text { same as }|n\rangle\langle n-3|
\end{aligned}
$$

* IR transition intensities $\propto|\langle n| \mathbf{x}| n+1\rangle\left.\right|^{2}$
* Survival and transfer probabilities of initially prepared pure harmonic oscillator non-eigenstate in an anharmonic potential.
* Expectation values of any function of \mathbf{x} and \mathbf{p}.

Universality: all k, m (system-specific) constants are removed until we put them back in at the end of the calculation.

$$
\begin{aligned}
& \text { e.g., What is }\langle\Delta x\rangle^{2}=\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right] \\
& \mathbf{x}^{2}=\frac{\hbar}{m \omega} x=\frac{\hbar}{m \omega}\left[\frac{1}{2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}\right] \longleftarrow \text { pure numbers in [1] } \\
& \langle\Delta x\rangle^{2}=\frac{\hbar}{2 m \omega}\left[\left\langle\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}\right\rangle-\left\langle\mathbf{a}+\mathbf{a}^{\dagger}\right\rangle^{2}\right] \text { ? }
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

