
 

 

    

5.73 Lecture #26 26 - 1 
HSO + HZeeman: Two Incompatible Terms! 

My goal for 5.73 

Matrix Elements for any kind of H 

energies and eigenvectors 

energy level transition intensity 
patterns patterns 

Non-degenerate Perturbation Theory 
Quasi-degenerate Perturbation Theory 
Exact diagonalization 

ρ(t) = p ψ (t) ψ (t)∑ k k k 
k 

A t = Trace(Aρ) 
∂ρ

i! = ⎡⎣H,ρ⎤⎦∂t 
Dynamics. 
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5.73 Lecture #26 26 - 2 
Previous Lecture 

HSO product of 2 angular momenta= ξ(r)ℓ ⋅s 
HZeeman = −"Bz γ (L z + 2S z ) sum of 2 angular momenta 

2 incompatible H’s 
Natural basis sets |nJLSMJ⟩ for HSO 

|nLML⟩|SMS⟩ for HZeeman 

Two types of building blocks: 

* uncoupled: each angular momentum reports directly to lab frame 

* coupled; each angular momentum couples in body frame to a sum-angular 
momentum which reports to lab frame 

There are many angular momenta: decide on most convenient sequences of 
couplings and uncouplings. 6-j coefficients give transformation between 
coupling schemes. 

For coupled⟷uncoupled transformation, need to know that the dimensions 
of the two basis sets are the same. Unitary transformation must exist 
because operators are Hermitian. 

Use ladders [J± = L± + S±] plus orthogonality to work out the transformation, 
one pair of basis states at a time. 

More compact and generally applicable methods will exploit 3-j and 6-j 
coefficients for transformations between basis states. 
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5.73 Lecture #26 26 - 3 

Today: 

A note before starting: atoms are spherical, space is isotropic, and distortions from 
angular symmetry and spatial isotropy are treated as small perturbations. 

1. Results from |JLSMJ⟩c ⟷|LMSMS⟩u c = coupled, u = uncoupled 

2. HZeeman in coupled basis set. 

3. Ways to deal with 2 incompatible terms. 

Easiest way is by Correlation Diagram (guided by non-crossing rule): states 
of same rigorous symmetry cannot cross. For coupled and uncoupled 
representations, the rigorous (conserved) symmetry is MJ. 

We get a pattern without calculations. Gives guidance for what to expect in 
an intermediate case. 

War between 2 limiting cases. 

One term gives Δ"!"($) ≠ 0 which tries to preserve one coupling case 
and one term gives H!"(&) ≠ 0 which tries to destroy that limiting case. 

4. Stepwise treatment 
A. Correlation Diagram 

, E(1)B. Non-degenerate Perturbation Theory: E(0) , E(2) using either basis 
set as framework [which term is H(0)]? The other term contributes to 
E(1) and E(2). 

5. Limiting patterns and types of distortion from the simple pattern 

* energy levels 
* transition intensities 

Correlation diagram: left side is HSO, right side is HZeeman. 

Typically, there is a center-of-gravity rule for each limit. 
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5.73 Lecture #26 26 - 4 
2P State Correlation Diagram 

non-crossing MJBz → 0, ≫ 0 B ≫ 0,ζ nℓ → 0ζ nℓ zbecause [H, Jz] = 0
coupled uncoupled 

MJ (ML, MS)
MJ 

MJ1/ 2ζ np +2Bγ 

+3/2 

–3/2 –3/2(-1, -1/2)–3/22P3/2 –1/2 
+1/2 –1/2 
+3/2 

–1/2 (0, -1/2)Bγ+1/2 

+1/2 (-1, 1/2)0 –1/2 (1, -1/2) 

0 

− Bγ +1/2 (0, 1/2) 

–1/2 

−2Bγ +3/2 (1, 1/2) 
+1/2 

+1/2 ∆MJ = 02P1/2 –1/2 −ζ np (the only 
interaction terms) 

center of gravity 
center of gravity 

⎛ 1 ⎞( )4 ζ 
⎠⎟
− (2)ζ = 0 −Bγ (2 +1+ 0 + 0 + −1+ −2) = 0np np ⎝⎜ 2 
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5.73 Lecture #26 26 - 5 

Transformation Uncoupled⟷Coupled for HZeeman 

ζ 
HSO + HZeeman nℓ= ℓ ⋅s − γB (L + 2S )z z z" 

In coupled basis set 

HSO nℓ= 
!ζ ⎡⎣J (J +1) − L(L +1) − S (S +1)⎤⎦

2 

HZeeman need to use coupled→uncoupled transformation 

|JLSMJ〉c |LMLSMS〉u 

⎞
⎠ 

3 1 3 1 1 

⎛
⎝ 

1 = 11
2 2 2 2 2 c u 

1/2 1/2 3 1 1 2 1 1 1 1 11 = 10 11 −⎜ ⎟ + ⎜ ⎟2 2 2 2 2 3 2 2 u u 

⎞
⎠3c 

1/2 1/2 1 1 1 ⎛ 1⎞ 1 1 ⎛ 2⎞ 1 1 

⎛
⎝ 

11 −
2
1
2 2 c 

= −
⎝⎜ 3⎠⎟ 

10 
2 2 

+ 
⎝⎜ 3⎠⎟ 2 2 u u 

1/2 1/2 3 1 1 ⎛ 2⎞ ⎛ 1⎞1 1 1 11 − = 10 − + ⎝⎜ ⎠⎟ 1−1⎝⎜ ⎠⎟2 2 2 2 2 3 2 2c 3 u u 

1/2 1 1 1 ⎛ 1⎞
1/2 

1 1 ⎛ 2⎞ 1 11 − = 10 − + 1−12 2 2 − 
⎝⎜ ⎠⎟ 2 2 ⎝⎜ 3⎠⎟ 2 2c 3 u u 

3 1 3 1 11 − = 1−1 −
2 2 2 2 2 c u 
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5.73 Lecture #26 26 - 6 
Matrix Elements of HZeeman in Coupled Basis 

3 1 3 3 1 3 1 1 1 1HZeeman diagonal 1 1 = −γB 11 L + 2S 11 z z z 
c 2 2 2 2 2 2 2 2 2 2c u u 

= −!γBz (1+1) = −2!γBz 

3 1 3 3 1 3 1 1 1 1HZeeman 1 − 1 − = −γB 1−1 − L + 2S 1−1 − z z z 
c 2 2 2 2 2 2 2 2 2 2c u u 

= −!γBz (−1+ −1) = 2!γBz 

3 1 1 ⎤⎡⎛ 2⎞ ⎛ 1⎞3 1 1 1 1 1 1 1 1 1 1HZeeman 1 1 = −γB 10 L + 2S 10 + 11 − L + 2S 11 − ⎥z ⎢⎝⎜ ⎠⎟ z z z z⎝⎜ ⎠⎟2 2 2 2 2 2 2 2 2 2 2 2 2 2c c ⎣ 3 u u 3 u u ⎦ 
⎡ 2 1 ⎤ 

= −!γBz (0 +1) + (1−1) 
⎣⎢ 3 3 ⎦⎥ 

2 = − !γB
3 z 

1 1 1 ⎤⎡⎛ 1⎞1 1 1 1 1 1 1 2 1 1 1 1HZeeman 1 1 = −γB 10 L + 2S 10 + 11 − L + 2S 11 − ⎥z ⎢⎝⎜ ⎠⎟ z z z z2 2 2 2 2 2 2 2 2 2 2 2 2 2c c ⎣ 3 u u 3 ⎦ 
⎡1 2 ⎤ 1 = −!γBz (0 +1) + (1−1)

⎦⎥ 
= − !γBz⎣⎢3 3 3 

1/2 1/2 1/2 ⎡ ⎤3 1 1 1 1 1 2 2 2HZeeman 1 1 = −!γB ⎢− (0 +1) + (1−1)⎥ = + !γBoff-diagonal 2 2 2 2 2 2 c
z ⎣ 3 3 ⎦ 3 z 

c 

3 1 1 3 1 1 ⎡ 2 1 ⎤ 2HZeeman 1 − 1 − = −!γBz (0 −1) + (−1+1)
⎦⎥ 
= + !γBz2 2 2 2 2 2 c ⎣⎢ 3 3 3c 

1 1 1 1 1 1 ⎡1 2 ⎤ 1HZeeman 1 − 1 − = −!γBz ⎣⎢ 
(0 −1) + (−1+1)

⎦⎥ 
= + !γBz2 2 2 2 2 2 c 3 3 3c 

1/2 ⎛ ⎞3 1 1 1 1 1 ⎡ 2 ⎤ 2HZeeman 1 − 1 − = −!γBz ⎣⎢
− (0 −1)

⎦⎥ 
= −!γBz ⎝⎜ ⎠⎟2 2 2 2 2 2 c 3 3c 

3 1 3 3 1 3HZeeman 1 − 1 − = +2!γB z2 2 2 2 2 2c c 
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5.73 Lecture #26 26 - 7 

⎛ 

HZeeman = !γB z 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜⎝ 

−2 0 0 0 0 0 

0 2− 
3 

1/2 2− 
3 

0 0 0 

0 
1/2 2− 

3 
1− 
3 

0 0 0 

0 0 0 2 
3 

1/2 2 
3 

0 

0 0 0 
1/2 2 

3 
1 
3 

0 

0 0 0 0 0 +2 

⎞ 
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎠ 

Now that we have the full HZeeman matrix in the coupled basis set, we can 
analyze it by non-degenerate perturbation theory in the strong spin-orbit limit. 
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5.73 Lecture #26 26 - 8 

E(0) E(0)+ E(1) E(0)+E(1)+E(2) 

+2γB !4/3ζ / 2 +2 / 3 
z 
γBz !4/3 −2 / 3γB h

4/3 −2γB h 
z 

z 

0 

1+ γB !
3 z 

2 / 3γB h z 1ζ – γB !
3 z 

asymmetry in pattern, 
middle 2 components 
pushed up, spacing 
unchanged, outer two 
components not shifted 
and their spacing is 
unchanged. 

both components shifted 
down, spacing 
unchanged 

What about eigenvectors? Relative intensities of transitions into shifted 
components are altered. 

You should draw a similar diagram for the strong Zeeman limit. 
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5.73 Lecture #26 26 - 9 

Coupled H 
mJ = 3/ 2 

J = 3/ 2 
mJ = 1/2 

J = 1/ 2 

J = 3/ 2 
mJ = -1/2 

J = 1/ 2 

mJ = −3/ 2 

ζ / 2 − 2γB z 

ζ / 2 − 
2 
3 
γB z 

21/2 

3 
γB z 

sym −ζ − 
1 
3 
γB z 

ζ / 2 + B z − γB z 

2γ 
3 

21/2 

3 

sym −ζ + γB z 

1 
3 

ζ / 2 + 2γB z 

Uncoupled H 
ζ / 2 − 2γB z 

−ζ / 2 2−1/2 ζ 

sym −γB z 

γB z 2−1/2 ζ 

sym −ζ / 2 
ζ / 2 + 2γB z mL = –1, mS = –1/2 

mL = 0, mS = –1/2 
mL = -1, mS = 1/2 

mL = 1, mS = –1/2 
mL = 0, mS = 1/2 

mL = 1, mS = 1/2 

EJ ,MJ 
= E3/2,3/2 = ζ / 2 − 2γBz 

⎡ )2 ⎤⎛ ζ γB ⎞ 9 (γB γB ζ 
1/2 

zz zE± ,1/2 = ⎝⎜ − − ⎠⎟ ± ⎢ ζ2 + − ⎥ 
4 2 ⎣16 4 4 ⎦ 

⎡ )2 ⎤⎛ ζ γB ⎞ 9 (γB γB ζ 
1/2 

zz zE± ,−1/2 = ⎝⎜ − + ⎠⎟ ± ⎢ ζ2 + − ⎥ 
4 2 ⎣16 4 4 ⎦ 

= ζ / 2 + 2γBE3/2,−3/2 z 

Same energy levels as coupled. 

Even though each of the matrices are different, when evaluated in 
the two basis sets, the eigen-energies must be identical. 
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