3D-Central Force Problems I

Read: C-TDL, pages 643-660 for next lecture.
Every step toward greater complexity is classical mechanics plus a tiny bit of something new.

All 2-Body, 3-D problems can be reduced to

* a 2-D angular part that is exactly and universally soluble
* a 1-D radial part that is system-specific and soluble by 1-D techniques in which you are now expert

Next 3 lectures:

Roadmap

1. define radial momentum $\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{q}-i \hbar)$
2. define orbital angular momentum $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{q}} \times \overrightarrow{\mathbf{p}}$

$$
\begin{aligned}
& \text { general definition of angular } \\
& \text { momentum and of "vector } \\
& \text { operators" }
\end{aligned} \quad\left(\text { also } \mathbf{L} \times \mathbf{L}=i \hbar \mathbf{L} \text { and }\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}\right)
$$

3. separate \mathbf{p}^{2} into radial and angular terms: $\mathbf{p}^{2}=\mathbf{p}_{\mathrm{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$
4. find Complete Set of Commuting Observables (CSCO) that is useful for "blockdiagonalizing" H

$$
\begin{aligned}
{\left[\mathbf{H}, \mathbf{L}^{2}\right]=} & {\left[\mathbf{H}, \mathbf{L}_{\mathrm{i}}\right]=\left[\mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}}\right]=0 \quad \mathbf{H}, \mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}} \quad \mathrm{CSCO} } \\
& \left|\mathrm{~L}, \mathrm{M}_{\mathrm{L}}\right\rangle \text { universal basis set }
\end{aligned}
$$

Recover a 1-D Schrödinger Equation
6. ALL Matrix Elements of Angular Momentum Components May be Derived from Commutation Rules.
7. Spherical Tensor Classification of all operators.
\Downarrow
8. Wigner-Eckart Theorem \rightarrow all angular matrix elements of all operators.

I hate differential operators. Replace them by exclusively using simple Commutation Rule based Operator Algebra.

Lots of derivations are based on classical VECTOR ANALYSIS - much of that will be set aside as NON-LECTURE

Central Force Problems: 2 bodies where interaction force is along the vector $\overrightarrow{\mathrm{q}}_{1}-\overrightarrow{\mathrm{q}}_{2}$

$$
\begin{aligned}
\overrightarrow{\mathrm{q}}_{2} & =\overrightarrow{\mathrm{q}}_{1}+\overrightarrow{\mathrm{q}}_{12} \\
\overrightarrow{\mathrm{q}}_{12} & =\overrightarrow{\mathrm{q}}_{2}-\overrightarrow{\mathrm{q}}_{1} \\
& =\hat{\mathrm{i}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\hat{\mathrm{j}}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\hat{\mathrm{k}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \\
\mathrm{r} \equiv\left|\overrightarrow{\mathrm{q}}_{12}\right| & =\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

origin
also Center of Mass (CM) Coordinate system

$$
\begin{array}{lc}
\vec{r}_{1}=\vec{q}_{1}-\vec{q}_{c m} & {\left[\left|r_{1}\right| / r=m_{2} / M\right]} \\
\vec{r}_{2}=\vec{q}_{2}-\vec{q}_{c m} & {\left[\left|r_{2}\right| / r=m_{1} / M\right]}
\end{array}
$$

$\mathbf{H}=\mathbf{H}_{\text {translation }}+\mathbf{H}_{\text {center of mass }}$
free translation motion of fictitious
of C of M of system of mass particle of mass

$$
\mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

in coordinate system
with origin at C of M (CTDL page 713)

This is $\overrightarrow{\mathrm{p}}$ in CM frame, not $\overrightarrow{\mathrm{p}}$ of CM
free translation of system with respect to lab (not interesting)
motion of particle of mass μ with respect to origin at center of mass

GOAL IS TO SIMPLIFY $\mathbf{p}_{\mathrm{CM}}^{2}$
because that is only place where the θ, ϕ degrees of freedom appear.

1. Define Radial Component of $\overrightarrow{\mathrm{p}}_{\mathrm{CM}}$

Correspondence Principle: recipe for going from classical to quantum mechanics
[* classical mechanics

* Cartesian Coordinates
* symmetrize to avoid failure to satisfy Commutation Rules
** verify that all three derived operators, $\mathbf{p}, \mathbf{p}_{\mathrm{r}}$, and \mathbf{L}
- are Hermitian
- satisfy $[\mathbf{q}, \mathbf{p}]=i \hbar$

Purpose of this lecture is to walk you through the standard vector analysis and Quantum Mechanical Correspondence Principle procedures

$$
\begin{aligned}
& \vec{q} \equiv \hat{i} x+\hat{j} y+\hat{k} z \\
& \vec{p} \equiv \hat{i} p_{x}+\hat{j} p_{y}+\hat{k} p_{z} \\
& r \equiv\left[x^{2}+y^{2}+z^{2}\right]^{1 / 2}=[q \cdot q]^{1 / 2}=|q|
\end{aligned}
$$

find radial (i.e. along \vec{q}) part of \vec{p}

radial component of p is obtained by projecting $\overrightarrow{\mathrm{p}}$ onto $\overrightarrow{\mathrm{q}}$

$$
p_{r}=|p| \cos \theta=|p| \frac{q \cdot p}{|q||p|}=\frac{q \cdot p}{r}
$$

$$
\text { so from standard vector analysis we get } \mathrm{p}_{\mathrm{r}}=\mathrm{r}^{-1} \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{p}}
$$

This is a trial form for \mathbf{p}_{r}, but it is necessary, according to the Correspondence Principle recipe, to symmetrize it.

$$
\mathbf{p}_{\mathrm{r}}=\frac{1}{4}\left[\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{q})+(\mathbf{q} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{q}) \mathbf{r}^{-1}\right]
$$

This expression arranges the terms in all possible orders!

This will be simplified to almost what one expected from CM. The only surprise must be multiplied by \hbar. That's QM!

NONLECTURE (except for Eq. (4))
SIMPLIFY ABOVE Definition to $\quad \mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \quad(\mathbf{r}$ is not a vector)

$$
\begin{align*}
& {[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}] \text { is a vector commutator }- \text { be careful }} \\
& {[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}]=\left[\mathbf{x}, \mathbf{p}_{x}\right]+\left[\mathbf{y}, \mathbf{p}_{y}\right]+\left[\mathbf{z}, \mathbf{p}_{z}\right]=3 i \hbar} \\
& \therefore \mathbf{p} \cdot \mathbf{q}=\mathbf{q} \cdot \mathbf{p}-[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}] \quad \text { because }[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}]=\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}} \\
& \mathbf{p}_{\mathrm{r}}=\frac{1}{4}\left[\mathbf{r}^{-1}(2 \mathbf{q} \cdot \mathbf{p}-[\stackrel{\text { वे }}{\mathbf{\mathbf { q }}} \stackrel{\rightharpoonup}{\mathbf{p}}])+(2 \mathbf{q} \cdot \mathbf{p}-[\stackrel{\rightharpoonup}{\mathbf{q}}, \stackrel{\rightharpoonup}{\mathbf{p}}]) \mathbf{r}^{-1}\right] \tag{1}\\
& =\frac{1}{4}[\underbrace{\mathbf{r}^{-1} 4 \mathbf{p} \cdot \mathbf{p}-\mathbf{r}^{-1} 2 \mathbf{q} \cdot \mathbf{p}}_{\text {add and subtract 2r-4 } \mathbf{q} \mathbf{p}}+2 \mathbf{q} \cdot \mathbf{p r}^{-1}-6 i \hbar \mathbf{r}^{-1}] \tag{2}\\
& =\mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}-\frac{3}{2} i \hbar \mathbf{r}^{-1}+\frac{1}{2}\left[\mathbf{q} \cdot \mathbf{p}, \mathbf{r}^{-1}\right] \tag{3}
\end{align*}
$$

LEMMA: need a more general Commutation Rule for which $\left[\mathbf{q} \cdot \mathbf{p}, \mathbf{r}^{-1}\right]$ is a special case

$$
\text { 1st simplify: }[\mathrm{f}(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=\mathbf{q} \cdot[\mathrm{f}(\mathbf{r}), \overrightarrow{\mathbf{p}}]+[\mathrm{f}(\mathbf{p}), \overrightarrow{\mathbf{q}}] \cdot \overrightarrow{\mathbf{p}}
$$

but, from 1-D, we could have shown

$$
\begin{aligned}
{[f(\mathbf{x}), \mathbf{p}] \phi } & =f(\mathbf{x}) \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}} \phi-\frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x}) \phi) \\
& =\frac{\hbar}{i}\left[f(\mathbf{x}) \phi^{\prime}-f^{\prime} \phi-f \phi^{\prime}\right]=i \hbar f^{\prime}(\mathbf{x}) \phi
\end{aligned}
$$

$$
[f(\mathbf{x}), \mathbf{p}]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \quad \text { for 1-D }
$$

Thus, in 3-D, the chain rule gives, for the vector commutator:

$$
\left.\begin{array}{c}
{[f(\mathbf{r}), \overrightarrow{\mathbf{p}}]=i \hbar\left[\hat{i} \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}+\hat{j} \frac{\partial f}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{y}}+\hat{k} \frac{\partial f}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{z}}\right]} \\
\left.\frac{\partial \mathbf{r}}{\partial \mathbf{x}}=\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}\right]^{1 / 2}=\mathbf{e x a l u a t e \text { these first }}=\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}\right]^{-1 / 2}=\mathbf{x} / \mathbf{r}
\end{array}\right] .
$$

Thus $[f(\mathbf{r}), \overrightarrow{\mathbf{p}}]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}}\left[\hat{i} \frac{\mathbf{x}}{\mathbf{r}}+\hat{j} \frac{\mathbf{y}}{\mathbf{r}}+\hat{k} \frac{\mathbf{z}}{\mathbf{r}}\right]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \frac{\overrightarrow{\mathbf{q}}}{\mathbf{r}}$

$$
[f(\mathbf{r}), \overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{p}}]=\mathbf{q} \cdot[f(\mathbf{r}), \mathbf{p}]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}}\left(\frac{\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}}{\mathbf{r}}\right)=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \mathbf{r}
$$

this is a scalar, not a vector, equation

But we wanted to evaluate the commutation rule for $f(\mathbf{r})=\mathbf{r}^{-1}$

$$
\begin{equation*}
\left[\mathbf{r}^{-1}, \mathbf{q} \cdot \mathbf{p}\right]=i \hbar \frac{\partial}{\partial \mathrm{r}}\left(\frac{1}{\mathrm{r}}\right) \mathrm{r}=-i \hbar \mathbf{r}^{-1} \tag{5}
\end{equation*}
$$

plug this result into (3)

$$
\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}-\frac{3}{2} i \hbar \mathbf{r}^{-1}+\frac{1}{2}\left(i \hbar \mathbf{r}^{-1}\right)=r^{-1}(q \cdot p-i \hbar)
$$

RESUME
HERE

$$
\begin{equation*}
\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar) \tag{6}
\end{equation*}
$$

This is the compact but non-symmetric result we got starting with a carefully symmetrized starting point - as required by Correspondence Principle.

* This result is identical to the result obtained from standard vector analysis IN THE LIMIT OF $\hbar \rightarrow 0$.
Still must do 2 things: \quad show that $\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right]=i \hbar$
show that $\mathbf{p}_{\mathbf{r}}$ is Hermitian

$$
\begin{aligned}
{\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right] } & =\left[\mathbf{r}, \mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar)\right] \\
& =\mathbf{r}^{-1}[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}]-\mathbf{r}^{-1}\left[\mathbf{r}, f^{0}\right]+\left[\check{\sim}, \mathbf{r}^{-1}\right](\mathbf{q} \cdot \mathbf{p}-i \hbar) \\
& =\mathbf{r}^{-1}[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}] \text { Use Eq. (4) to get } \\
{[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}] } & =i \hbar \mathbf{r} \text { using the non-lecture result: }[f(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=i \hbar \frac{\partial f}{\partial \mathbf{r}} \mathbf{r}
\end{aligned}
$$

*

$$
\therefore\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right]=i \hbar
$$

* we do not need to confirm that $\mathbf{p}_{\mathbf{r}}$ is Hermitian because it was constructed from a symmetrized form which is guaranteed to be Hermitian. Why is this guaranteed?

Correspondence Principle!
2. Verify that the Classical Definition of Angular Momentum is Appropriate for QM.

$$
\vec{L}=\vec{q} \times \vec{p}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \tag{7}\\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right|
$$

We will see that this definition of an angular momentum is acceptable as far as the correspondence principle is concerned, but it is not sufficiently general.

NONLECTURE
What about symmetrizing $\overrightarrow{\mathrm{L}}$?

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{x}}=y p_{z}-z p_{y}=p_{z} y-p_{y} z \\
& \quad=-(\vec{p} \times \vec{q})_{x} \\
& \therefore p \times q=-L
\end{aligned}
$$

PRODUCTS OF
NON-CONJUGATE
QUANTITIES

$$
\begin{array}{ll}
\mathbf{q} \times \mathbf{p}+\mathbf{p} \times \mathbf{q}=0 & \text { symmetrization is impossible! } \\
\mathbf{q} \times \mathbf{p}-\mathbf{p} \times \mathbf{q}=2 \overrightarrow{\mathbf{L}} & \text { antisymmetrization is unnecessary! }
\end{array}
$$

But is $\overrightarrow{\mathbf{L}}$ Hermitian as defined?
BE CAREFUL: $\quad(\mathbf{q} \times \mathbf{p})^{\dagger} \neq \mathbf{p}^{\dagger} \times \mathbf{q}^{\dagger}!$
go back to definition of vector cross product

$$
\begin{aligned}
& \mathbf{L}_{\mathrm{x}}=\mathbf{y} \mathbf{p}_{\mathrm{z}}-\mathbf{z} \mathbf{p}_{\mathrm{y}} \\
& \mathbf{L}_{\mathrm{x}}^{\dagger}=\mathbf{p}_{\mathrm{z}}^{\dagger} \mathbf{y}^{\dagger}-\mathbf{p}_{\mathrm{y}}^{\dagger} \mathbf{z}^{\dagger}=\mathbf{p}_{\mathrm{z}} \mathbf{y}-\mathbf{p}_{\mathrm{y}} \mathbf{z}=\mathbf{y} \mathbf{p}_{\mathrm{z}}-\mathbf{z} \mathbf{p}_{\mathrm{y}}=\mathbf{L}_{\mathrm{x}}
\end{aligned}
$$

(derived using fact that \mathbf{p} and \mathbf{q} are Hermitian)
$\therefore \overrightarrow{\mathbf{L}}$ is Hermitian as defined.
RESUME

This is a transformation definition using different operators
(II and \perp with respect to $\overrightarrow{\mathbf{q}}$)

Classically
part of $\overrightarrow{\mathbf{p}}$ points along $\overrightarrow{\mathbf{q}}: \mathbf{p}_{\|}$

* Right Hand rule for $\overrightarrow{\mathbf{q}} \times(\overrightarrow{\mathbf{q}} \times \overrightarrow{\mathbf{p}})$ gives component mostly opposite to $\overrightarrow{\mathbf{p}}$, hence the minus sign * \mathbf{r}^{-2} is needed in both terms to remain dimensionally correct
talk through this vector identity
1st term ($\mathbf{p}_{\| \mid}$): $\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{p}}=|\overrightarrow{\mathrm{q}}||\overrightarrow{\mathrm{p}}| \cos \theta$

$$
\begin{aligned}
& \overrightarrow{\mathrm{q}} /|\mathrm{q}|=\text { unit vector along } \overrightarrow{\mathrm{q}} \\
& \vec{p} /|p|=\text { unit vector along } \vec{p}
\end{aligned}
$$

2nd term $\left(\mathbf{p}_{\perp}\right): \quad \overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}}$ points \perp up out of paper

finger

thumb
$\stackrel{\widetilde{q}}{x} \times \underbrace{q \times p}_{\text {finger }}$ is in plane of paper in opposite direction of p_{\perp},

Is it necessary to symmetrize Eq. (9)? Find out below.

NONLECTURE

Examine Eq. (9) for QM consistency
x component

$$
\mathrm{p}_{\mathrm{x}}=\mathrm{r}^{-2}\left[\mathrm{x}\left(\mathrm{xp} \mathrm{x}_{\mathrm{x}}+\mathrm{yp} \mathrm{p}_{\mathrm{y}}+\mathrm{zp} \mathrm{p}_{\mathrm{z}}\right)-\left(\mathrm{yL}_{\mathrm{z}}-\mathrm{zL} \mathrm{~L}_{\mathrm{y}}\right)\right]
$$

but $\quad \mathrm{yL}_{\mathrm{z}}-\mathrm{zL} \mathrm{y}_{\mathrm{y}}=\mathrm{y}\left(\mathrm{xp}_{\mathrm{y}}-\mathrm{yp} p_{\mathrm{x}}\right)+\mathrm{z}\left(\mathrm{xp}_{\mathrm{z}}-\mathrm{zp} p_{\mathrm{x}}\right)$
$p_{x}=r^{-2}\left[\left(x^{2}+y^{2}+z^{2}\right) p_{x}+\left(x y-\operatorname{yx}^{0}\right)^{0} p_{y}+\left(x z-z^{0}\right) p_{z}\right]=p_{x}$
similarly for p_{y}, p_{z}

Symmetrize? No, because the 2 parts of $\overrightarrow{\mathrm{p}}$ are already shown to be Hermitian.

3B. Evaluate p•p. Use Eq. (9)
$\mathbf{p}^{2}=\overrightarrow{\mathbf{p}} \mathbf{r}^{-2}[\mathbf{q}(\mathbf{q} \cdot \mathbf{p})-\mathbf{q} \times(\mathbf{q} \times \mathbf{p})]$
$\left[\right.$ goal is $\left.\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}\right]$
commute $\overrightarrow{\mathbf{p}}$ through \mathbf{r}^{-2} to be able to take advantage of classical vector triple product
NONLECTURE

$$
\begin{aligned}
{\left[\overrightarrow{\mathbf{p}}, \mathbf{r}^{-2}\right]=} & -i \hbar\left[\hat{i} \frac{\partial}{\partial \mathbf{x}} \mathbf{r}^{-2}+\hat{j} \frac{\partial}{\partial \mathbf{y}} \mathbf{r}^{-2}+\hat{k} \frac{\partial}{\partial \mathbf{z}} \mathbf{r}^{-2}\right] \text { using } \overrightarrow{\mathbf{p}}=\frac{\hbar}{i}\left[\hat{i} \frac{\partial}{\partial \mathbf{x}} \hat{j} \frac{\partial}{\partial \mathbf{y}} \hat{k} \frac{\partial}{\partial \mathbf{z}}\right] \\
& =2 i \hbar \mathbf{r}^{-4} \overrightarrow{\mathbf{q}} \quad\left[\operatorname{Recall}\left[\mathrm{f}(\mathbf{x}), \mathbf{p}_{\mathbf{x}}\right]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right]
\end{aligned}
$$

because $\frac{\partial}{\partial \mathbf{x}} \mathbf{r}^{-2}=-2 \mathbf{r}^{-3} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}=-2 \mathbf{r}^{-3}\left(\frac{1}{2}\right) \frac{2 \mathbf{x}}{\mathbf{r}}=-2 \mathbf{x} / \mathbf{r}^{4}$

$$
\left[\overrightarrow{\mathbf{p}}, \mathbf{r}^{-2}\right]=\overrightarrow{\mathbf{p}} \mathbf{r}^{-2}-\mathbf{r}^{-2} \overrightarrow{\mathbf{p}}=2 i \hbar \mathbf{r}^{-4} \overrightarrow{\mathbf{q}}
$$

$$
\begin{equation*}
\text { thus } \quad \overrightarrow{\mathbf{p}} \mathbf{r}^{-2}=\mathbf{r}^{-2}\left(\overrightarrow{\mathbf{p}}+2 i \hbar \mathbf{r}^{-4} \overrightarrow{\mathbf{q}}\right) \tag{11}
\end{equation*}
$$

now insert Equation (11) into Equation (10), we get

$$
\begin{equation*}
\mathbf{p}^{2}=r^{-2}\left(\overrightarrow{\mathbf{p}}+2 i \hbar \mathbf{r}^{-2} \overrightarrow{\mathbf{q}}\right)[\overrightarrow{\mathbf{q}} \cdot(\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{p}})-\overrightarrow{\mathbf{q}} \times(\overrightarrow{\mathbf{q}} \times \overrightarrow{\mathbf{p}})] \tag{12}
\end{equation*}
$$

multiply this out and get 4 terms.

$$
\begin{gathered}
\mathbf{p}^{2}=\mathbf{r}^{-2}(\mathbf{p} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{p})-\mathbf{r}^{-2} \mathbf{p} \cdot[\mathbf{q} \times(\mathbf{q} \times \mathbf{p})]+\mathbf{r}^{-2}(2 \mathrm{i} \hbar) \mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{p})-\mathbf{r}^{-2}(2 \mathrm{i} \hbar) \mathbf{r}^{-2} \mathbf{q} \cdot[\mathbf{q} \times(\mathbf{q} \times \mathbf{p})] \\
\text { I } \\
\text { II }
\end{gathered}
$$

We have achieved our goal.

$$
\begin{align*}
& \mathbf{r p}_{\mathbf{r}}+\mathrm{i} \hbar \\
& \left.\begin{array}{rl}
\mathbf{I} & =\mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{p}-3 \mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p}) \\
\mathbf{I I I} & =\mathbf{r}^{-2}(2 \mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p})
\end{array}\right\} \mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p})=\mathbf{r}^{-1} \mathbf{p}_{\mathbf{r}}(\mathbf{q} \cdot \mathbf{p}) \\
& \mathbf{I I}=-\mathbf{r}^{-2}(\mathbf{p} \times \mathbf{q}) \cdot(\mathbf{q} \times \mathbf{p})=-\mathbf{r}^{-2}\left(-\mathbf{L}^{2}\right)=\mathbf{r}^{-2} \mathbf{L}^{2} \\
& \mathbf{I V}=-\mathbf{r}^{4}(2 i \hbar)(\mathbf{q} \times \mathbf{q})^{0} \cdot(\mathbf{q} \times \mathbf{p}) \\
& \mathbf{p}^{2}=\mathbf{r}^{-1} \mathbf{p}_{\mathbf{r}}\left(\mathbf{r} \mathbf{p}_{\mathrm{r}}+\mathrm{i} \hbar\right)+\mathbf{r}^{-2} \mathbf{L}^{2}=\mathbf{r}^{-1}\left[\mathbf{r} \mathbf{p}_{\mathbf{r}}-\mathrm{i} \hbar\right] \mathbf{p}_{\mathbf{r}}+\mathbf{r}^{-1} \mathbf{p}_{\mathbf{r}} \mathrm{i} \hbar+\mathbf{r}^{-2} \mathbf{L}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2} \tag{13}\\
& \mathbf{r p}_{\mathbf{r}}-\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right]
\end{align*}
$$

RESUME

This $\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$ equation
is a very useful and simple form for \mathbf{p}^{2} - separated into additive radial and angular terms! Whenever \mathbf{H} can be separated into additive radial and angular terms, then the eigenvectors can be factored into radial and angular parts.

SUMMARY

$\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar) \quad$ radial momentum
$\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$ separation of radial and angular terms
$\mathbf{H}=\frac{\mathbf{p}_{\mathbf{r}}^{2}}{2 \mu}+\left[\frac{\mathbf{L}^{2}}{2 \mu \mathbf{r}^{2}}+V(\mathbf{r})\right]$ Separation of \mathbf{H} into radial and angular terms eventually $\quad V_{\ell}(\mathbf{r})=\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathbf{r}^{2}}+V(\mathbf{r}) \quad \begin{aligned} & \text { a sum of a "centrifugal" repulsive term and a } \\ & \text { radial potential energy term }\end{aligned}$
Next Lecture: properties of $\mathbf{L}_{i}, \mathbf{L}^{2} \longrightarrow$ Complete Set of Commuting Observables (CSCO)

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

