5.73

Quiz 25

1.

$$\mathbf{L} \cdot \mathbf{S} = \frac{1}{2} [\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2]$$

$$\mathbf{L} \cdot \mathbf{S} = \mathbf{L}_z \mathbf{S}_z + \frac{1}{2} [\mathbf{L}_+ \mathbf{S}_- + \mathbf{L}_- \mathbf{S}_+]$$

$$\mathbf{H}^{SO} = \zeta \mathbf{L} \cdot \mathbf{S}$$

$$\mathbf{H}^{Zeeman} = -\gamma \beta_z (\mathbf{L}_z + 2\mathbf{S}_z)$$

- A. For a ${}^{2}F_{5/2}$ state:
 - (i) What is S?
 - (ii) What is L?
 - (iii) What is **J**?
 - (iv) Evaluate $\langle {}^{2}F_{5/2}, M_{J} | \mathbf{H}^{SO} | {}^{2}F_{5/2}, M_{J} \rangle$.
 - (v) Evaluate $\langle {}^{2}F_{7/2}, M_{J} = 7/2 | \mathbf{H}^{\text{Zeeman}} | {}^{2}F_{7/2}, M_{J} = 7/2 \rangle$.

B. Apply $\mathbf{J}^- = \mathbf{L}^- + \mathbf{S}^-$ to both sides of $|{}^2F_{7/2}, M_J = 7/2\rangle = |{}^2F, M_L = 3, M_S = 1/2\rangle$ where the two basis states are the "extreme" states, respectively in the coupled and uncoupled basis sets:

$$|\mathbf{J}^-|^2 F_{7/2}, M_J = 7/2 \rangle = (\mathbf{L}^- + \mathbf{S}^-)|^2 F, M_L = 3, M_S = 1/2 \rangle.$$

Find the normalized combination of $|{}^2F$, $M_L = 2$, $M_S = 1/2$ and $|{}^2F$, $M_L = 3$, $M_S = -1/2$ that corresponds to $|{}^2F$, $M_J = 5/2$.

- C. Verify that $|{}^2F_{5/2}, M_J=5/2\rangle = -7^{-1/2}|{}^2F, M_L=2, M_S=1/2\rangle + (6/7)^{1/2}|{}^2F, M_L=3, M_S=-1/2\rangle$ is orthogonal to $|{}^2F_{7/2}, M_J=5/2\rangle$ which you obtained in part B.
- D. Evaluate $\langle {}^{2}F_{5/2}, M_{J} = 5/2 | \mathbf{H}^{\text{Zeeman}} | {}^{2}F_{5/2}, M_{J} = 5/2 \rangle$.

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.