5.73

Quiz 25

1.

$\mathbf{L} \cdot \mathbf{S}=\frac{1}{2}\left[\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}\right]$
$\mathbf{L} \cdot \mathbf{S}=\mathbf{L}_{z} \mathbf{S}_{z}+\frac{1}{2}\left[\mathbf{L}_{+} \mathbf{S}_{-}+\mathbf{L}_{-} \mathbf{S}_{+}\right]$
$\mathbf{H}^{\text {SO }}=\zeta \mathbf{L} \cdot \mathbf{S}$
$\mathbf{H}^{\text {Zeeman }}=-\gamma \beta_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)$

A. For a ${ }^{2} F_{s 2}$ state:
(i) What is \mathbf{S} ?
(ii) What is \mathbf{L} ?
(iii) What is \mathbf{J} ?
(iv) Evaluate $\left.\left.\left\langle{ }^{2} F_{5 / 2}, M_{J}\right| \mathbf{H}^{\mathrm{SO}}\right|^{2} F_{5 / 2}, M_{J}\right\rangle$.
(v) Evaluate $\left\langle{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right| \mathbf{H}^{\text {Zeeman }}\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle$.
B. Apply $\mathbf{J}^{-}=\mathbf{L}^{-}+\mathbf{S}^{-}$to both sides of $\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle=\left|{ }^{2} F, M_{L}=3, M_{S}=1 / 2\right\rangle$ where the two basis states are the "extreme" states, respectively in the coupled and uncoupled basis sets:

$$
\left.\mathbf{J}^{-}\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle=\left.\left(\mathbf{L}^{-}+\mathbf{S}^{-}\right)\right|^{2} F, M_{L}=3, M_{S}=1 / 2\right\rangle .
$$

Find the normalized combination of $\left|{ }^{2} F, M_{L}=2, M_{S}=1 / 2\right\rangle$ and $\left|{ }^{2} F, M_{L}=3, M_{S}=-1 / 2\right\rangle$ that corresponds to $\left|{ }^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle$.
C. Verify that $\left.\left.\left.\right|^{2} \mathrm{~F}_{5 / 2}, \mathrm{M}_{\mathrm{J}}=5 / 2\right\rangle=-\left.7^{-1 / 2}\right|^{2} \mathrm{~F}, \mathrm{M}_{\mathrm{L}}=2, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle$ $\left.+\left.(6 / 7)^{1 / 2}\right|^{2} \mathrm{~F}, \mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=-1 / 2\right\rangle$ is orthogonal to $\left.\left.\right|^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle$ which you obtained in part B .
D. Evaluate $\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2 \mid \mathbf{H}^{\text {Zeeman }}{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

