
    
 

 
  
 

 
 
 

 
 
 

   
 

   
 

  
 

 
 

 
    

 
 

 
 

      

 
 
 
 

 
 
   

 
   

 
   

 
     

 
     

 
   

 

 

		 		

 

      
  

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I 
Fall, 2018 

Professor Robert W. Field 

Problem Set #3 

 Reading: Merzbacher, pages 113-134 

Note: We are going to return to some of these problems once we learn how to use 
perturbation theory. 

Problems: 

1. Airy Functions, piecewise linear potentials.

For the following 5 potentials, find the energies of the 5 lowest energy
eigenstates.

1/3 
!2C2 ⎛ ⎞ 

= 2 × 10−6  erg. for all potentials.  You are free to choose specificLet ⎜
⎝

⎟
⎠2m 

values, as needed to make computer programs work,  for all unspecified constants (m,L). 

A. “Vee-box.”

V(x) = C|x| C > 0 

(optional)B. “Vee-box plus δ-function” (a symmetric double minimum potential) 

V(x) = C|x| + aδ(x) a = 10C, C > 0 

C. “Vee-bottom box”.

V(x)= ∞ |x |> L /2 V(x)= ∞ |x |> L /2 

CL CL V(x)= Cx − 0 < x ≤ L /2 V(x)= Cx − 0 < x ≤ L /2 4 4 
CL CL V(x)= −Cx − −L/2≤ x < 0 V(x)= −Cx − −L/2≤ x < 0 4 4 

Warning:  This is tricky.  You will need to use both Ai (for x > 0) and Bi (for x < 
0). 
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D. “Inverted Vee-bottom infinite box.” 

V(x)= ∞ |x |> L /2 

CL V(x)= −Cx + 0 < x ≤ L /2 4 
CL V(x)= Cx + −L/2≤ x < 0 4 

E. “Slant-bottom infinite box. ” 

V(x)= ∞ |x |> L /2 

V(x)= Cx |x |≤ L /2 

(optional)F. Compare the energies from parts A and B and discuss in terms of “tunneling”. 

G. Compare the energies from parts C, D, and E to the energies of an ordinary 
infinite box, V(x) = ∞ for |x| > L/2, V(x) = 0 for |x| ≤ L/2.  All three boxes have the 
same average depth.  If the energies are not identical, explain.  If they are 
identical, perhaps the WKB quantization condition (even though it is inapplicable 
here for several reasons), applied at E = CL/2, will provide an explanation. 
[HINT:  Box D is a symmetric double minimum potential, unlike boxes C and E.] 

(optional)H. Return to the potential of part B and choose a < 0.  Consider only the lowest 
energy level.  Is there any value of a for which the energy of the lowest energy 
level does not fall below E = 0?  Is there any value of a for which more than one 
level has E < 0?  [The second part requires no calculation, only words.] 

2. WKB Quantization 

Consider the Lennard-Jones potential: 

12 6 ⎡ ⎤ ⎛ σ ⎞ ⎛ σ ⎞ V(x)= ε + 4ε⎢⎝⎜ ⎠⎟ −⎝⎜ ⎠⎟ 
⎥ 

⎢ ⎥ ⎣ x x ⎦ 

Let ε = 100, m = 100, σ = 1, ! = 1, and h = 2π. 

dV 
A. What is the value of V(x) at the minimum of the potential (when dx =0)? 

B. What is the difference in energy between V(xmin) and V(∞)?  This is called the 
dissociation energy, De. 
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C. Use WKB quantization to determine the total number of levels bound in V(x).  
This (not necessarily integer) number is vD. [Hint: ED = V(∞), solve for x–(ED).] 

dn 
D. The classical period of oscillation is h Use the d/dE form of the WKB dE . 

quantization condition to determine dn/dE.  Compute the oscillation period for the 
3 integer values of v just below the (noninteger) vD. [It may be necessary to resort 
to numerical rather than analytic integration.] 

E. Estimate the locations of the first interior node just to the right of x–(E) and just to 
the left of x+(E) for the three vibrational levels in part D. [Hint:  WKB 
wavefunctions start with phase π/4 at the turning point and the phase increases as 
one moves away from the turning point into the classical region.  The first node 
occurs at an accumulated phase of 3π/4.] 

F. Calculate, using classical mechanics, the time it takes for a classical particle to 
dV 

move from x±(E) to the first internal node.  Recall that Force = – dx .  It is a good 

approximation here to treat V(x) as linear with slope equal to the slope at x±(E).  
Do this calculation for the inner and outer turning point regions for each of the 
three levels you considered in part D. 

G. For the three vibrational levels from part D, what fraction of the oscillation period 
does the system spend in the outermost lobe of the vibrational wavefunction? 
[More correct language would be: “What is the probability of finding the system 
within the specified range of x?”]  In the innermost lobe?  What is the ratio of the 
times [or more correctly, probabilities] in these two lobes for the three highest 
vibrational levels?  You are supposed to be surprised by the result you obtain. 

H. Suggest an explanation, based entirely on your answer to part G, for why the 
long-range expression 

A( vD − v) 3 
= EvD 

− Ev , 

where A is a constant, can be determined entirely by the x–6 dependence of the 
attractive limb of the potential and is totally insensitive to the nature of the x–12 

dependent repulsive limb.  Does the value you obtain for A satisfy Le Roy’s long 
range theory for a C6R–6 long-range potential? 
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