Matrix Mechanics

should have read CDTL pages 94-121
read CTDL pages 121-144 ASAP
Last time: * Numerov-Cooley Integration of 1-D Schr. Eqn. Defined on a Grid.

* 2 -sided boundary conditions (two different kinds of boundary condition)
* nonlinear system - iterate to eigenenergies (Newton-Raphson)

So far focussed on $\psi(x)$ and Schr. Eq. as differential equation.
Variety of methods $\quad\left\{\mathrm{E}_{\mathrm{i}}, \psi_{\mathrm{i}}(\mathrm{x})\right\} \leftrightarrow \mathrm{V}(\mathrm{x})$
Often we want to evaluate integrals of the form

overlap of special ψ with standard functions $\{\phi\}$	$\int \psi^{*}(x) \phi_{i}(x) d x=a_{i}$	a is "mixing coefficient" ϕ_{i} is a member of a "complete" set of basis functions, $\{\phi\}$
expectation values and transition moments	OR	$\phi_{\mathrm{i}}^{*} \hat{\mathrm{x}}^{\mathrm{n}} \phi_{\mathrm{j}} \mathrm{dx} \equiv\left(\mathrm{x}^{\mathrm{n}}\right)_{\mathrm{ij}}$

There are going to be elegant tricks for evaluating these integrals and relating one integral to others that are already known. Also "selection" rules for knowing automatically which integrals are zero: symmetry, commutation rules

Today: begin matrix mechanics - deal with matrices composed of these integrals focus on manipulating these matrices rather than solving a differential equation - find eigenvalues and eigenvectors of matrices instead (COMPUTER "DIAGONALIZATION"). LINEAR ALGEBRA.

* Wigner-Eckart Theorem and 3-j coefficients: use symmetry to identify and interrelate values of nonzero integrals
* Perturbation Theory: tricks to find approximate eigenvalues of infinite matrices
* Density Matrices: information about "state of system" as separate from "measurement operators"

First Goal: Dirac notation as convenient NOTATIONAL simplification
It is actually a new abstract picture
(vector spaces) — but we will stress the utility of $\psi \leftrightarrow\rangle$ relationships rather than the philosophy!

Find equivalent matrix form of standard $\psi(x)$ concepts and methods.

1. Orthonormality $\int \psi_{i}^{*} \psi_{\mathrm{j}} \mathrm{dx}=\delta_{\mathrm{ij}}$
2. Completeness $\quad \psi(x)$ is an arbitrary function
(expand ψ A. Always possible to expand $\psi(\mathrm{x})$ uniquely in a COMPLETE BASIS SET

$$
\begin{array}{cc}
\{\phi\} & \psi(\mathrm{x})=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \phi_{\mathrm{i}}(\mathrm{x}) \\
* & \mathrm{a}_{\mathrm{i}}=\int \phi_{\mathrm{i}}^{*} \psi \mathrm{dx}
\end{array} \text { mixing coefficient - how to get it? }
$$

(expand $\hat{B} \psi) \quad$ B. Always possible to expand $\hat{B} \psi$ in $\{\phi\}$ since we can write ψ in terms of $\{\phi\}$.
So simplify the question we are asking to $\hat{B} \phi_{i}=\sum_{j} \mathrm{~b}{ }_{j} \phi_{j}$ What are the $\left\{\mathrm{b}_{\mathrm{j}}\right\}$? Multiply by $\int \phi_{\mathrm{j}}^{*}$

$$
b_{j}=\int \phi_{j}^{*} \hat{B} \phi_{i} d x \equiv B_{j i}
$$

$$
\hat{B} \phi_{i}=\sum_{j} \underbrace{B_{j i} \phi_{j}}_{\substack{\text { note counter-intuitive pattern of } \\ \text { indices. We will return to this. }}}
$$

* The effect of any operator on ψ_{i} is to give a linear combination of ψ_{j} 's.

3. Products of Operators

$$
\begin{array}{rlr}
(\hat{\mathrm{A}} \hat{\mathrm{~B}}) \phi_{\mathrm{i}} & =\hat{\mathrm{A}}\left(\hat{\mathrm{~B}} \phi_{\mathrm{i}}\right)=\hat{\mathrm{A}} \sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{ji}} \phi_{\mathrm{j}} \\
& \text { can move numbers (but not operators) around freely } \\
& =\sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{ji}} \hat{\mathrm{~A}} \phi_{\mathrm{j}}=\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{~B}_{\mathrm{ji}} \mathrm{~A}_{\mathrm{kj}} \phi_{\mathrm{k}} \quad \text { note repeated } \mathrm{j} \text {-index } \\
& =\sum_{\mathrm{j}, \mathrm{k}}\left(\mathrm{~A}_{\mathrm{kj}} \mathrm{~B}_{\mathrm{ji}}\right) \phi_{\mathrm{k}}=\sum_{\mathrm{k}}(\mathrm{AB})_{\mathrm{ki}} \phi_{\mathrm{k}} \quad \text { note repeated } \mathrm{k} \text {-index }
\end{array}
$$

* Thus the product of 2 operators follows the rules of matrix multiplication:
$\hat{A} \hat{B}$ acts like AB
Recall rules for matrix multiplication:

$$
(\bar{\square})\left(\| \text { indices of a matrix are } A_{\text {row }, \text { column }}\right.
$$

must match \# of columns on left to \# of rows on right

$$
(N \times N) \otimes \quad(N \times N) \quad \rightarrow \quad(N \times N) \quad \text { a matrix }
$$

the order of matrices matters!

Need a notation that accomplishes all of this memorably and compactly.

Dirac's bra and ket notation
Heisenberg's matrix mechanics
ket $\left\rangle\right.$ is a column matrix , i.e. a vector $\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right)$

The ket contains all of the "mixing coefficients" for ψ expressed in some (implicit) basis set.
[These are projections onto unit vectors in N -dimensional vector space.] Must be clear what state is being expanded in what basis

$$
\begin{aligned}
& \psi(\mathrm{x})=\sum_{\mathrm{i}}\left[\int \phi_{\mathrm{i}}^{*} \psi \mathrm{dx}\right] \phi_{\mathrm{i}}(\mathrm{x}) \quad \text { express }\{\psi\} \text { basis in }\left\{\phi_{i}\right\} \text { basis } \\
& |\psi\rangle=\left(\begin{array}{c}
\int \phi_{1}^{*} \psi \mathrm{dx} \\
\int \phi_{2}^{*} \psi \mathrm{dx} \\
\vdots \\
\int \phi_{\mathrm{N}}^{*} \psi \mathrm{~d} \mathrm{x}
\end{array}\right)_{\phi}=\left(\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\vdots \\
\mathrm{a}_{\mathrm{N}}
\end{array}\right) \quad \begin{array}{l}
* \psi \text { expressed in } \phi \text { basis } \\
\boldsymbol{\Lambda}_{\text {bookkeeping device (RARELY USED }} \\
\text { * nothing here is a function of } \mathrm{x}
\end{array} \\
& \text { to specify basis set }
\end{aligned}
$$

OR, a pure state in its own basis
$\left|\phi_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)_{\phi} \quad$ one 1, all others 0 (often expressed as $|2\rangle$)
$|\psi\rangle=a_{1}\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)+a_{2}\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right)+\ldots a_{N}\left(\begin{array}{c}0 \\ \vdots \\ \vdots \\ 1\end{array}\right) \quad<\begin{aligned} & \text { a weighted } \\ & \text { sum of unit } \\ & \text { vectors } \\ & \square\end{aligned}$
bra $\langle |$ is a row matrix $\left(b_{1}, b_{2} \ldots b_{N}\right)$. contains all mixing coefficients for ψ^{*} in $\left\{\phi^{*}\right\}$ basis set

$$
\psi^{*}(x)=\sum_{i}\left[\int \phi_{i} \psi^{*} d x\right] \phi_{i}^{*}(x) \quad \text { (This is } * \text { of } \psi(\mathrm{x}) \text { above) }
$$

The $*$ stuff is needed to make sure $\langle\psi \mid \psi\rangle=1$ even though $\left\langle\phi_{\mathrm{i}} \mid \psi\right\rangle$ is complex.

The symbol $\langle\mathrm{a} \mid \mathrm{b}\rangle$, a bra-ket, is defined in the sense of a product of $(1 \times \mathrm{N}) \otimes(\mathrm{N} \times 1)$ matrices \rightarrow a 1×1 matrix: a number!

Box Normalization in both ψ and $(\perp\rangle$ pictures

$$
\begin{aligned}
& 1=\int \psi^{*} \psi d x \\
& \psi=\sum_{i}\left(\int \phi_{i}^{*} \psi d x\right) \phi_{i}
\end{aligned}
$$

take complex conjugate of ψ equation
expand both in ortho-normal
$\left.\psi^{*}=\sum_{j}\left(\int \phi_{j} \psi^{*} d x\right) \phi_{j}^{*}\right]$ ϕ basis

$$
1=\int \psi^{*} \psi d x=\sum_{i, j}\left(\int \frac{\phi_{j} \psi^{*}}{*} d x\right)\left(\int \frac{\phi_{i}^{*} \psi}{\uparrow} d x\right) \int_{\delta_{j}}^{\phi_{j}^{*} \phi_{i} d x}
$$

$$
1=\sum_{j}\left|\int \phi_{j}^{*} \psi d x\right|^{2}
$$

real, positive \#'s
forces the 2 sums (over i and j) to collapse into 1 sum (over j)

We have proved that sum of \mid mixing coefficients $\left.\right|^{2}=1$. These mixing coefficients "squared" are called "mixing fractions" or "fractional characters".
now in $\langle\mid\rangle$ picture

$=\sum_{j}\left|\int \phi_{j}{ }_{j} \psi d x\right|^{2} \quad$ same result as in wavefunction representation
[CTDL talks about "dual vector spaces" - best to walk before you run. Always translate \rangle into ψ picture until you are sure you understand the notation.]

Any symbol 〈 > is a complex number.
Any symbol | 〉<| is a square matrix.

what is $\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=(10 \ldots 0)\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & \cdots \\ 0 & 0 & \\ \vdots & & \ddots\end{array}\right)$
three dots are shorthand for specifying only the important part of an infinite matrix
what is \(\left.\sum_{\mathrm{i}}\left|\phi_{\mathrm{i}}\right\rangle\left\langle\phi_{i}\right|=\left($$
\begin{array}{cccc}1 & & & 0 \\
& 1 & 0 & \\
& 0 & 1 & \\
0 & & & \ddots\end{array}
$$\right) \quad \begin{aligned} \& unit or identity

\& matrix = \mathbb{1}\end{aligned} \right\rvert\,\)| $\begin{array}{l}\text { Large zero (0) } \\ \text { denotes a lot of } \\ \text { zeroes. }\end{array}$ |
| :--- |

"completeness" or "closure" involves insertion of $\mathbb{1}$ between any two symbols.

Use $\mathbf{1}$ to evaluate the matrix elements of the product of 2 operators, $\mathbf{A B}$ (we know how to do this in Ψ picture).

$$
\begin{aligned}
& \begin{aligned}
\left\langle\phi_{i}\right| \mathbf{A}\left|\phi_{j}\right\rangle & =(0 \ldots 1 \ldots 0)(\mathbf{A})\left(\begin{array}{l}
\text { i-th } \\
\downarrow \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right) \\
& \begin{array}{l}
\text { j-th position - picks } \\
\text { out j-th column of } \mathbf{A}
\end{array} \\
& =(0 \ldots 1 \ldots 0)\left(\begin{array}{ll}
A_{1 j} \\
A_{2 j} \\
\vdots
\end{array}\right)=A_{i j}
\end{aligned} \begin{array}{l}
\text { picks out the i-th element of a } \\
\text { column vector }
\end{array} \\
& \left\langle\phi_{i}\right| \mathbf{A B}\left|\phi_{j}\right\rangle=\sum_{k}\left\langle\phi_{i}\right| \mathbf{A} \underbrace{\left.\phi_{k}\right\rangle}_{\mathbb{1}}\left\langle\phi_{k}\right| \mathbf{B}\left|\phi_{j}\right\rangle \\
& =\sum_{k} A_{i k} B_{k j}=(\mathbf{A B})_{i j} \quad \text { a number (obtained by matrix multiplication) }
\end{aligned}
$$

In the Heisenberg picture, how do we get an exact equivalent of $\psi(x)$? Use basis set $\delta\left(x, x_{0}\right)$ for all $x_{0}-$ this is a "complete" basis (eigenbasis for $\hat{\mathrm{x}}$, eigenvalue x_{0}) - perfect localization at any x_{0}

This $\langle\mathrm{x} \mid \psi\rangle$ symbol is the same thing as $\psi(\mathrm{x})$
$\uparrow \quad$ (i.e., $\left.\int \delta\left(x, x^{\prime}\right)^{*} \psi\left(x^{\prime}\right) d x^{\prime}=\psi(x)\right)$
x is continuously variable $\leftrightarrow \delta(\mathrm{x})$
Overlap of state vector ψ with $\delta(\mathrm{x})$ - a complex number. $\psi(x)$ is a complex function of a real variable.
other $\psi \leftrightarrow\langle\mid\rangle$ relationships

1. All observable quantities are represented by a Hemitian operator (Why because the expectation values of a Hermitian operator are always real). Definition of Hermitian operator:
For a matrix: $\quad \mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}^{*} \quad$ or $\quad \mathbf{A}=\mathbf{A}^{\dagger}$
2. Change of basis set
Easy to prove that if all
expectation values of \mathbf{A}
are real, then $\mathbf{A}=\mathbf{A}^{\dagger}$ and
vice-versa

$$
\mathbf{A}^{\phi} \leftrightarrow \mathbf{A}^{u} \quad\{\phi\} \text { to }\{u\}
$$

$$
\begin{aligned}
& u \text { basis } \\
& =\sum_{k, \ell} S_{i k}^{\dagger} A_{k \ell}^{\downarrow} S_{\ell j}=\left(\mathbf{s}^{\dagger} A^{u} \mathbf{S}\right)_{i j} \equiv A_{i j}^{\substack{\phi \text { basis }}} \\
& A^{\phi}=S^{\dagger} A^{u} S \\
& \begin{array}{l}
\mathbf{S}^{\dagger \cdots \mathbf{S} \text { is a special kind of }} \\
\text { transformation (unitary) }
\end{array} \\
& \text { (different from more-familiar } \\
& \mathbf{T}^{-1} \mathbf{A T} \text { "similarity" } \\
& \text { transformation) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For a state vector (ket): } \\
& \qquad \begin{aligned}
\left|\phi_{j}\right\rangle & =\sum_{\ell}\left|u_{\ell}\right\rangle\left\langle u_{\ell} \mid \phi_{j}\right\rangle=\sum_{\ell=1}^{N}\left|u_{\ell}\right\rangle S_{\ell j}=\left(\begin{array}{c}
S_{1 j} \\
\vdots \\
S_{N j}
\end{array}\right) \\
\left|\phi_{j}\right\rangle & =\left(\begin{array}{c}
S_{\ell j} \\
\vdots \\
S_{N j}
\end{array}\right) \text { This is the j-th column of } \mathbf{S} .
\end{aligned}
\end{aligned}
$$

The linear combination of $\left|u_{i}\right\rangle$ for each $\left|\phi_{j}\right\rangle$ is the j-th column of S. Also, the linear combination of $\left|\phi_{j}\right\rangle$ for each $\left|u_{i}\right\rangle$ is the i -th column of S^{\dagger}. [This is a very useful thing to remember.]

What kind of matrix is \mathbf{S} ?

$$
\begin{aligned}
& S_{\ell j}=\left\langle u_{\ell} \mid \phi_{j}\right\rangle \\
& S_{\ell j}^{*}=\left[\left\langle u_{\ell} \mid \phi_{j}\right\rangle\right] *=\left\langle\phi_{j} \mid u_{\ell}\right\rangle \equiv S_{j \ell}^{\dagger}
\end{aligned}
$$

\dagger means take complex conjugate and interchange indices.
Using the definitions of S and S^{\dagger} :

$$
\begin{aligned}
& S_{\ell j} S_{j k}^{\dagger}=\left\langle u_{\ell} \mid \phi_{j}\right\rangle\left\langle\phi_{j} \mid u_{k}\right\rangle \\
& \begin{aligned}
& \sum_{j} S_{\ell j} S_{j k}^{\dagger}=\sum_{j}\left\langle u_{\ell} \mid \phi_{j}\right\rangle\left\langle\phi_{j} \mid u_{k}\right\rangle=\left\langle\left.\left. u_{\ell}\right|_{\uparrow}\right|_{u_{k}} u_{k}\right\rangle=\delta_{\ell k} \\
&=\left\langle u_{\ell} \mid u_{k}\right\rangle=\delta_{\ell k}=\rrbracket_{\ell k} \\
& \mathbf{S S}^{\dagger}=\mathbb{1} \text { OR } \quad \mathbf{S}^{\dagger}=\mathbf{S}^{-1} \text { "Unitary" } \\
& \mathbf{S}^{\dagger} \text { is inverse of } \mathbf{S} \text { matrix }
\end{aligned}
\end{aligned}
$$

Unitary transformations preserve both normalization and orthogonality.

$$
\begin{aligned}
\mathbf{A}^{\phi} & =\mathbf{S}^{\dagger} \mathbf{A}^{u} \mathbf{S} \\
\mathbf{S A}^{\phi} \mathbf{S}^{\dagger} & =\mathbf{S S}^{\dagger} \mathbf{A}^{u} \mathbf{S S}^{\dagger}=\mathbf{A}^{u} \\
\mathbf{A}^{u} & =\mathbf{S A}^{\phi} \mathbf{S}^{\dagger}
\end{aligned}
$$

Take matrix element of both sides of equation:

$$
\begin{aligned}
A_{i j}^{u} & =\left\langle u_{i}\right| \mathbf{A}\left|u_{j}\right\rangle=\left(\mathbf{S A}^{\dagger} \mathbf{S}^{\dagger}\right)_{i j} \\
& =\sum_{k, \ell} \mathbf{S}_{i k}\left\langle\phi_{k}\right| \mathbf{A}\left|\phi_{\ell}\right\rangle \mathbf{S}_{\ell j}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore\left|u_{j}\right\rangle=\sum_{\ell}\left|\phi_{\ell}\right\rangle \mathbf{S}_{\ell j}^{\dagger} \quad\left|u_{j}\right\rangle \text { is } j \text {-th column of } \mathbf{S}^{\dagger} \\
& \phi \rightarrow u \text { via } \mathbf{S}^{\dagger}, \mathbf{S}:\left|u_{j}\right\rangle \text { is j-th column of } \mathbf{S}^{\dagger}
\end{aligned}
$$

Thus,

$$
\left|u_{j}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
\text { j-th } \\
1 \\
\vdots \\
0
\end{array}\right)_{u}=\left(\begin{array}{c}
S_{1 j}^{\dagger} \\
S_{2 j}^{\dagger} \\
\vdots \\
\vdots \\
S_{n j}^{\dagger}
\end{array}\right)_{\phi}
$$

Similarly,

$$
\begin{aligned}
\mathrm{A}_{\mathrm{pq}}^{\phi} & =\left\langle\phi_{p}\right| \mathrm{A}\left|\phi_{q}\right\rangle=\left(\mathrm{S}^{\dagger} \mathrm{A}^{u} \mathrm{~S}\right)_{p q} \\
& =\sum_{m n} S_{p m}^{\dagger}\langle u_{m} \underbrace{\left.|\mathrm{~A}| u_{n}\right\rangle}_{\left|\phi_{q}\right\rangle}\rangle S_{n q}
\end{aligned}
$$

$\therefore\left|\phi_{q}\right\rangle=\sum_{n}\left|u_{n}\right\rangle S_{n q} \quad q$-th column of S

Commutation Rules

* $\quad[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$
e.g. $[\hat{x}, \hat{p}]=i \hbar \quad$ means $(\hat{\mathrm{x}} \hat{\mathrm{p}}-\hat{\mathrm{p}} \hat{\mathrm{x}}) \phi=x \frac{\hbar}{i} \frac{d \phi}{d x}-\frac{\hbar}{i}\left(\phi+x \frac{d \phi}{d x}\right)=-\frac{\hbar}{i} \phi=\hbar i \phi$

$$
=i \hbar \phi
$$

* If \hat{A} and \hat{B} are Hermitian, is $\hat{A} \hat{B}$ Hermitian?

Hermitian A and B
$(A B)_{i j}=\sum_{k} A_{i k} B_{k j}=\sum A_{k i}^{*} B_{j k}^{*}=\sum B_{j k}^{*} A_{k i}^{*}=(B A)_{j i}^{*}$
but this is not what we need to be able to show that $\mathbf{A B}$ is Hermitian:
That would be: $(\mathbf{A B})_{i j}=(\mathbf{A B})_{j i}^{*} \quad$ or $\quad \mathbf{A B}=(\mathbf{A B})^{\dagger} \neq(\mathbf{B A})^{\dagger}$
$\mathbf{A B}$ is Hermitian only if $[\mathbf{A}, \mathbf{B}]=0$
However, $\frac{1}{2}[\mathbf{A B}+\mathbf{B A}]$ is Hermitian if both \mathbf{A} and \mathbf{B} are Hermitian.
This is a foolproof way to construct a new Hermitian operator out of simpler Hermitian operators.
This is the standard prescription for implementing the Correspondence Principle for constructing a quantum mechanical equivalent of a classical mechanical quantity. Quantities that commute in classical mechanics do not always commute in quantum mechanics. Almost everything that is not classical mechanical in quantum mechanics is derivable from $\left[\hat{x}, \hat{p}_{x}\right] \neq 0$!

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

