5.73

Quiz 24 ANSWERS

$$
\begin{gathered}
\text { Pauli Matrices: } \mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \boldsymbol{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\boldsymbol{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \boldsymbol{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\hline
\end{gathered}
$$

A. What are the eigenvalues of $\boldsymbol{\sigma}_{x}, \boldsymbol{\sigma}_{y}$, and $\boldsymbol{\sigma}_{z}$?.

$\sigma_{x}:$	$E^{2}-1=0$	$E= \pm 1(E$ is for eigenvalue $)$
$\sigma_{y}:$	$E^{2}-1=0$	$E= \pm 1$
$\sigma_{z}:$	$(1-E)((-1-E)=0$	$\left(-1+E^{2}\right)=0$

B. Let $M=\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)$. Find the trace of
(i) $\quad \mathbf{M I}$

Trace $\mathrm{M}=1+4=5$
(ii) $\mathbf{M} \boldsymbol{\sigma}_{x}$
$\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}3 \cos \omega t & 1 \\ 4 & 3 \cos \omega t\end{array}\right)$
$\operatorname{Trace}\left(\mathbf{M} \sigma_{x}\right)=3 \cos \omega t+3 \cos \omega t$
$=6 \cos \omega t$
(iii) $\mathbf{M} \boldsymbol{\sigma}_{y}$

$\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$	$=3 \cos \omega t-3 i \cos \omega t$
	$=0$

(iv) $\mathbf{M} \boldsymbol{\sigma}_{z}$
$\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{cc}1 & -3 \cos \omega t \\ 3 \cos \omega t & -4\end{array}\right)$
$\operatorname{Trace}\left(\mathbf{M} \sigma_{z}\right)=1=4=-3$
C. Let $\rho(t)=\frac{1}{5} \mathbf{M} . \quad \mathbf{M}=\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)$ Consider the vector
$a_{x}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{x}\right)=\frac{1}{10} \operatorname{Tr}\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\frac{1}{10}(1+3 \cos +3 \cos)=\frac{1}{10}+\frac{3}{5} \cos \omega t$
$a_{y}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{y}\right)=\frac{1}{10} \operatorname{Tr}\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=\frac{1}{10}[3 i \cos \omega t-3 \cos \omega t]=0$
$a_{z}=\frac{1}{2} \operatorname{Tr}\left(\rho \sigma_{z}\right)=\frac{1}{10} \operatorname{Tr}\left(\begin{array}{cc}1 & 3 \cos \omega t \\ 3 \cos \omega t & 4\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\frac{1}{10}[1-4]=\frac{-3}{10}$

Where is the vector a pointing at $\mathrm{t}=0$ and at $\mathrm{t}=\pi / 2 \omega$?

$$
\begin{array}{cc}
a t \quad t=0 & t=\pi / 2 \omega \\
a_{x}(0)=\frac{7}{10} & a_{x}(\pi / 2 \omega)=\frac{1}{10} \\
a_{y}(0)=0 & a_{y}(\pi / 2 \omega)=0 \\
a_{z}(0)=-\frac{3}{10} & a_{z}(\pi / 2 \omega)=-3 / 10
\end{array}
$$

\vec{a} is moving back and forth along a line in $x z$ plane

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

