
 

               
  

              
       

                    

                  
                

 

 

  
  
  
  
  
  
  
  

  

5.73 
EXAM 1 

NAME: 

You may discuss what the questions mean with each other, but you may not discuss strategies for solving 
the problems with each other.  You may obtain a computer program from another member of the class, but 
you must credit that person for providing the program. I will answer email questions and, if appropriate, 
copy the entire class with the question and my response. 

You have used all of the computer programs you will need for this exam on problem sets #1 – 5. 

If you find that you cannot solve one or more of the parts of this exam, please try to simplify the problem 
so that it becomes one you can solve. If this simplification is not possible, please describe what you expect 
to find.  All insights will be richly rewarded. 

GRADING: 

A. /10 
B. /15 
C. /15 
D. /10 
E. /10 
F. /20 
G. /10 
H. /10 

TOTAL: /100 
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The two potential energy curves on which this entire exam is based are 

V1(x) = a|x| (a in erg·cm–1 , x in cm) 
V2(x) = –a (x – 2 × 10–7 cm) x < 2 × 10–7 cm 
V2(x) = 0 2 × 10–7 cm ≤ x ≤ 11 × 10–7 L (L in cm) 
V2(x) = ∞ x > 11 × 10–7L 
L = 1 cm (The limit L → ∞ will be examined in one question). 

1 1 A. (10 points) Compute the first 10 eigen-energies ( E0 – E9 ) of the Hamiltonian for 
V1(x), 

H1 = p2/2m + V1(x) 
and save the eigenfunctions.  Adjust m and a so that the 5th level (i.e., 
the one with 4 internal nodes) lies at E = ax±(E) where 

x±(E) = ±1 × 10–7 cm. 

B. (15 points) Compute ψ(x) and the density of states, ρ(E), for each of the 10 
eigenstates of the Hamiltonian for V2, H2, for L = 1cm 

H2 = p2/2m + V2(x) 
that have energies nearest those of the lowest 10 eigenstates of H1. 
(Note that there will be at least 50 eigenstates of H2 at E ≤ E1

9.  You are 
looking for 10 pairs of near-degenerate eigenstates, one member of the 
pair from H1, the other from H2). 
[HINT:  If you use DVR to find the energies and eigenfunctions of H2, 
I suggest you convert V2(x) into a symmetric potential centered at 
x = 11 × 10–7 cm and retain the left half of only the (re-normalized) 
odd-symmetry eigenstates.] 

The best way to find the energies of H2 is by Numerov-Cooley.  The 
best way to obtain the density of states is by the WKB quantization 
condition converted to dn/dE form.  The WKB method is especially 
well suited to taking the limit L →∞.  The simple numerical 
procedure 

1 1 ⎡ 1 1 ⎤ 
ρ(En ) = or = ⎢ + ⎥ En − En −1 2 ⎣En − En−1 En+ 1 − En ⎦ 

works well for part B and agrees with WKB.  DVR has the 
disadvantage that you still need to import the analytic harmonic 
oscillator eigenfunctions in order to use your DVR eigenvectors to 
compute overlap integrals in subsequent parts. 

The best way to solve this problem is the exact analytic solution based 
on zeroes of Airy functions and derivatives of Airy functions.  This 
permits an exact value of the parameter a to be obtained (assuming a 
value of m). 
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C. (15 points) Compute the overlap integral, 〈 n1|n2〉 , and the “x-centroid”, x , n1n2 

x , for each of the 10 n1, n2 near degenerate pairs of 
eigenstates. 

n1 n2 n1 | n2 

(i) What does the qualitative structure of E vs. 〈 n1|n2〉 tell you? 
(ii) Compare the values of the x-centroids to the value of x at which 

V1(x) and V2(x) intersect.  What does this tell you and what does 
“stationary phase” have to do with your observation? 

The overlap and 〈 n1|x|n2〉 integrals both accumulate in the vicinity of 
the stationary phase point for the integrand, which is located very near 
the x-value of the intersection of the two potentials, xc.  Because the 
two wavefunctions have the same classical momentum at xc, the ψ*

1 ψ2 
integrand stops oscillating in the neighborhood of xc.  The length of 
the stationary phase region is determined by the difference between the 
derivatives of V1(x) and V2(x) at xc.  This determines the range about 
xc where ψ1 and ψ2 develop π/2 phase difference.  
The values of the 〈 n1|n2〉 and 〈 n1|x|n2〉 integrals are determined by 3  
factors: 

(i) The classical p–1/2(x) envelope at xc. 

(ii) The length of the stationary phase region (determined by 
dV1 dV2 − at x = xc). 
dx dx 

(iii) The phase of ψ1 relative to that of ψ2 at xc.  If one 
wavefunction has a node and the other has an antinode at xc, 
then the overlap will be accidentally close to 0. 

(See handout from my book, pages 279-285.) 

The structure of E vs. 〈 n1|n2〉 gives you the energy at which V1(x) 
crosses V2(x) from the initial turning-on of the overlap.  Since you do 
not initially know the strength of the interaction, you can’t use the 
actual measured quantitative effect of the interaction to determine 
anything about the shapes of the potentials beyond the fact that they 
intersect at E = V1(xc) = V2(xc).  However, the oscillatory structure of

〈 n1|n2〉 does give you an experimental sample of 
dV1 − 

dV2 at xc.  This 
dx dx 

information is encoded in the oscillatory structure (period of 
oscillation, relative magnitudes of successive maxima) of 〈 n1|n2〉 . 



       

 
 

    
   

 
  

   

 
 

 
 

        
 

   
 

   

 

 
 

 

   

 
 

  
 

    
 

       
   

  
  

 
    

   
  

5.73 EXAM I Page 4 of 8 Pages 

The x-centroid is not a measurable quantity.  However, its constant 
value of xc is a simple consequence of stationary phase.  Both 〈 n1|x|n2〉 
and 〈 n1|n2〉 accumulate in the vicinity of xc.  The relative phase effects 
(in comment (iii) above) are the same for both integrals and cancel in 

x n1 n2 the definition of the x-centroid.  The fact that = xc means 
n1 n2 

that observable quantities sample inter-state interaction functions 
exclusively at the xc values of the curve crossings.  Convenient for 
experimentalists but sad news for theorists! 

D. (10 points) In part B you computed the density of “box-normalized” states, ρL(E), 
for H2.  Convert to the density of states for continuum functions 
normalized to a δ–function in E, using 

⎡ 1 ⎤ 
ρδE (E) = lim ⎢ ρL(E)⎥ L=∞⎣ L ⎦ 

You may use WKB quantization or any convenient shortcut to obtain 
ρδE(E) for H2. 

E. (10 points) 

The best way to solve for ρδE(E) is to use the density of states derived 
from WKB quantization.  Trial and error increases of L give the same 
result, but in a cumbersome and E-dependent manner.  One really 
interesting result is that the L →∞ limit gives the density of states for 
a free particle.  Why?  Because the region of x where V(x) is x-
dependent is vastly smaller than the region of x where V(x) = 
constant! 

Fermi’s Golden Rule, for the decay rate of a bound state embedded in 
a continuum, is 

1 
τ 
= 

2π 

! 
f H i, Ei 

2 
ρ f (Ei ) 

where 1/τ is the decay rate (τ is the lifetime, as in e–t/τ), 〈 f| is the final 
state normalized to a δ-function in E at E = Ei, |i,Ei〉 is the box-
normalized initial state that belongs to the Ei eigen-energy, and ρf(Ei) 
is the δ-function normalized final state density at E = Ei.  This 
equation describes the rate of decay of population prepared at t = 0 in 
the stationary eigenstate Ei that results from the interaction between 
the discrete and continuum states at E = Ei.  Compute τ for each of the 
10 lowest levels of H1, where 
H12 = 〈 n1|A(x)|n2〉
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and 
dA 

A(x) = A(0) + x 
dx x=0 

thus 
⎡ dA ⎤ 

H = A(0) + n1 n2 n1n2 
⎢
⎣ 

x ⎥
⎦ 
. 

dx n1n2 
x=0 

dA Let A(0) = 0.1a and = 0.1a. 
dx x=0 

Note that A(x) is exclusively sampled at x = 1 × 10–7 cm and that there 
is no good experimental way to distinguish between A(x) = constant 
and A(x) linear in x. (You determined a value for a in part A.) 

To use the Fermi Golden Rule formula, it is essential that you use the 
final state density, ρf(E), that is appropriate for the way the final 
continuum states are normalized: box vs. δ-function in E.  Note that as 
L →∞ the 〈 n1|n2〉 2 overlap integral squared (box normalized) goes as 
1/L but ρf goes as L.  The two L-dependences cancel, at least they 
cancel once L is large enough.  It is large enough when L is large 
enough.  When the energy of the continuum state is so close to that of 
the bound state that the phase error at xc (discussed in the comment 
about part C) is negligible. 

The form of the interaction function illustrates the “x-centroid 
approximation.”  A(x) is sampled exclusively at xc.  For the values 
given 

H = a (0.1). n1 | n2 n1n2 
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F. (20 points) Solve for the eigen-energies of the total H 
⎛ ⎞ 

H = 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎝ 

E n1 ( = 0 ) 
0 n1 A(x) n2 

0 
E n1 ( = 9 ) 

E n2 ( = 0 ) 
sym 0 

0 
E n2 ( = max ) 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠ 

where the upper left-hand block is the diagonal H1, the lower right-hand block is 
the diagonal H2 (with L = 1cm), and the H12 off-diagonal block couples the 
eigenstates of H1 and H2 and is filled with an enormous number of off-diagonal 
matrix elements of the form 〈 n1|n2〉 2A(0).  You have two choices for filling the 
elements of H12.  The hard choice is to compute all of the n1 = 0–9, n2 = 0–nmax 

overlap integrals.  The easy choice is to fill H12 with random numbers chosen so 
that, for each value of n1, their root mean squared value is equal to 2A(0) 

n1 = n | n2 ′ , where v2 ′ is the quantum number for the level of H2 most nearly 
degenerate with the n-th level of H1.  Number the eigen-energies of the total H in 

1 order of increasing E and plot vs. En.  This is the discretized density of 
E − E n+1 n 

states.  You should see “resonances” in the density of states centered at the eigen-
energies of H1 and with full width at half maximum (FWHM) equal to something 
like !/τ, where the τ values are what you computed in part E.  It is possible that, 
for L = 1 cm, the density of states in H is too sparse to capture a sufficient number 
of points on the Lorentzian shape ρ(E) at each of the 10 resonances. 

⎤ 
⎥
⎥⎦ 

⎡ 
⎢
⎢⎣ 

Fermi’s Golden Rule (FGR) is more accurately expressed in terms of the average 
of the squared matrix element at E.  This is why I told you that you could take a 
shortcut and replace the actual 〈 n1|n2〉 matrix elements by random numbers slaved 
to the value for the pair of near degenerate levels from V1(x) and V2(x). It is most 
accurate to use for ρ(E) 

1 1 1 ρ E + ( ) ≈ 
2 E − E E n−1 n+1 − En 

because this partly co
n

rrects for accidental near degeneracies and makes the 
resonances more symmetric (as they really should be). 
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G. (10 points) Explore the effects of A(0) and/or L on the shape of the 5th and 6th 
resonances (the ones just at and just above the intersection between 
V1(x) and V2(x)). 

Increasing A(0) should make the resonances broader, precisely as 
required by the FGR.  Increasing L will do nothing at all, because of 
the canceling effects on |〈 n1|n2〉 |2 and ρL(x). 

H. (10 points) The qualitative behavior you have observed in the decay rates and 
widths of the quasi-eigenstates that arise from the interaction between 
a bound state and a continuum provides experimental signatures for 
the energy of the intersection between V1 and V2 and for the difference 

⎛ dV1 dV2 ⎞ in the derivatives, − 
⎠⎟ 
, evaluated at the x coordinate of the 

⎝⎜ dx dx 

intersection.  What are these signatures? 

See the comment for part C.  The most dramatic thing is the sudden 
turning on of the interaction (predissociation) just above the energy of 
the curve crossing.  The oscillations of the resonance widths give 

dV1 dV2 information about and at xc. 
dx dx 

There is an entirely different way to look at these effects, and that is 
the “Landau-Zener” picture.  The two crossing potentials (called 
“diabatic”) are converted to “adiabatic” potentials by diagonalizing H 
at each x.  One gets two adiabatic potentials that do not cross, but 
approach to each other most closely at x = xc.  The vertical energy 
difference between the adiabatic potentials at xc is 2A(xc). 

Vad 
2 

↑ 

xc Vad 
1 
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Now the picture becomes more classical.  If the particle, initially on 
Vad at E > Vad (xc), is moving fast toward larger x in the region of xc, it 1 2 

does not notice the avoided crossing and jumps from Vad to Vad and 1 2 
remains bound.  However, if the particle is moving slowly near xc, it 
follows the adiabatic curve and dissociates.  This would be a good 
problem for an exam in 5.74! 
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