3D-Central Force Problems II. Levi-Civita: $\varepsilon_{i j k}$.

Last time: $\quad *[\mathbf{x}, \mathbf{p}]=\mathrm{i} \hbar \rightarrow$ use to obtain vector commutation rules: generalize from 1-D to 3-D

* we have conjugate position and momentum components in Cartesian coordinates
Correspondence Principle Recipe
Cartesian coordinates and vector analysis
Symmetrize (make it Hermitian) classical mechanics in $\hbar \rightarrow 0$ limit
Derived key results:

$$
\begin{aligned}
& {\left[f(\mathbf{x}), \mathbf{p}_{\mathbf{x}}\right]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Rightarrow\left[f(\mathbf{r}), \mathbf{p}_{x}\right]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \frac{\mathrm{~d} \mathbf{r}}{\mathrm{~d} \mathbf{x}}=i \hbar \frac{\partial \mathbf{f} \mathbf{x}}{\partial \mathbf{r}} \frac{\mathbf{r}}{}} \\
& {[f(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=i \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \mathbf{r} \text { based on } \frac{\partial \mathbf{f}}{\partial \mathbf{r}}\left(\frac{\partial \mathbf{r}}{\partial \mathbf{x}}+\frac{\partial \mathbf{r}}{\partial \mathbf{y}}+\frac{\partial \mathbf{r}}{\partial \mathbf{z}}\right) \text { and } \mathbf{r}=\left[\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}\right]^{1 / 2}} \\
& * \mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar) \leftarrow \text { (came from symmetrization in Cartesian coordinates) } \\
& * \mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2} \longleftarrow \\
& * \mathbf{L}=\mathbf{q} \times \mathbf{p} \quad \text { separated } \mathbf{p}_{\|} \text {from } \mathbf{p}_{\perp} \\
& \text { operator algebra gave simple separation of variables } \\
& \text { not necessary (or possible) to symmetrize }
\end{aligned}
$$

TODAY [purpose is mostly to practice commutation rule [,], and angular momentum algebras]

* Obtain angular Momentum Commutation Rules \rightarrow Block diagonalize \mathbf{H}
* $\varepsilon_{\text {ijk }}$ Levi-Civita Antisymmetric Tensor useful in derivations, vector commutators, and remembering stuff.

Next Lecture: Begin derivation of all angular momentum matrix elements starting from the Commutation Rule definitions of angular momentum components.

GOALS

1. $\left[\mathbf{L}_{i}, f(r)\right]=0$ any scalar function of scalar r.
2. $\left[\mathbf{L}_{i}, \mathbf{p}_{\mathrm{r}}\right]=0 \quad$ difficult - need to use $\varepsilon_{\mathrm{ij} \mathrm{j}}$!
3. $\left[\mathbf{L}_{i}, \mathbf{p}_{\mathbf{r}}^{2}\right]=0$
4. $\left[\mathbf{L}_{i}, \mathbf{L}^{2}\right]=0 \quad\left(\operatorname{but}\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}^{2}\right] \neq 0!\right)$
5. C.S.C.O. $\quad \mathbf{H}, \mathbf{L}^{2}, \mathbf{L}_{i} \rightarrow$ enable block diagonalization of \mathbf{H}
\mathbf{L}^{2} and \mathbf{L}_{i} block-diagonalize \mathbf{H} according to different eigenvalues of \mathbf{L}^{2} and \mathbf{L}_{i}.
Items 1-4 are chosen to show that all terms in \mathbf{H} commute with \mathbf{L}^{2} and \mathbf{L}_{i}
L_{i} : choose \mathbf{L}_{z} for example
6. $\left.\quad\left[\mathbf{L}_{\mathrm{z}}, \mathrm{f}(\mathbf{r})\right]=\left[\mathbf{x} \mathbf{p}_{\mathrm{y}}-\mathbf{y} \mathbf{p}_{\mathrm{x}}, \mathrm{f}(\mathbf{r})\right]=\mathrm{x}\left[\mathbf{p}_{\mathrm{y}}, \mathrm{f}\right]+[\mathbf{x}, \mathrm{f}] \mathbf{p}_{\mathrm{y}}-\mathbf{y}\left[\mathbf{p}_{\mathrm{x}}, \mathrm{f}\right]\right]-[\mathbf{y}, \mathrm{f}] \mathbf{p}_{\mathrm{x}}$

$$
[\mathbf{x}, \mathrm{f}]=0, \quad[\mathbf{y}, \mathrm{f}]=0 \text { because }[\overrightarrow{\mathbf{q}}, \mathrm{f}(\mathbf{r})]=0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}
$$

$$
\operatorname{recall}\left[\mathrm{f}(\mathbf{r}), \mathbf{p}_{x}\right]=i \hbar \frac{\partial f}{\partial r} \frac{\partial r}{\partial x}=i \hbar \frac{\partial f}{\partial r} \frac{x}{r}
$$

2.

$$
\begin{aligned}
& {\left[\mathbf{L}_{z}, \mathbf{p}_{\mathbf{r}}\right] }=\left[\mathbf{L}_{z}, \mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar)\right]=\left[\mathbf{L}_{z}, \mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}\right] \\
&=\left[\mathbf{L}_{z}, \mathbf{r}^{-1}\right] \mathbf{q} \cdot \mathbf{p}+\mathbf{r}^{-1}\left[\mathbf{L}_{z}, \mathbf{q} \cdot \mathbf{p}\right] \quad \begin{array}{ll}
\frac{1}{r} & \begin{array}{l}
\text { is } f(\mathbf{r}) \text { and we just showed this } \\
\text { commutation rule }=0
\end{array} \\
{\left[\mathbf{L}_{z}, \mathbf{q} \cdot \mathbf{p}\right]} & =\mathbf{q} \cdot\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{p}}\right]+\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{q}}\right] \cdot \mathbf{p} \quad \text { two vector commutators on RHS }
\end{array} \\
&
\end{aligned}
$$

Note that vector $\overrightarrow{\mathbf{q}}$ is a not scalar $\mathrm{f}(\mathbf{r})$!
need to define special notational trick to evaluate these DIFFICULT COMMUTATORS

Either $A^{\prime}=A$ or $\mathbf{H}_{A A^{\prime}}=0$. If $A=A^{\prime}$, it is still possible to find linear combination of different eigenstates of \mathbf{A} (with same- A eigenvalues of \mathbf{A}) that diagonalizes the associated block of \mathbf{H}.

$$
[\mathbf{H}, \mathbf{A}]=0
$$

$0=\langle A|[\mathbf{H}, \mathbf{A}]\left|A^{\prime}\right\rangle=\langle A|[-\mathbf{A H}+\mathbf{H A}]\left|A^{\prime}\right\rangle=\left(-A+A^{\prime}\right) \mathbf{H}_{A A^{\prime}}$
so either $A=A^{\prime}$ or $\mathbf{H}_{A A^{\prime}}=0$

	Levi-Civita Symbol	$\varepsilon_{i j k}$			
Now for something very special	cyclic order	$\varepsilon_{x y z}=\varepsilon_{y z x}=\varepsilon_{z x y}=+1$			
and useful				adjacent interchange	$\varepsilon_{y x z}=\varepsilon_{z y x}=\varepsilon_{x z y}=-1 \quad$ (anti-cyclic order)
:---	:---				
2 repeated indices	$\varepsilon_{x x y}=$ etc. $=0$				

I claim $\left[\mathbf{L}_{\mathbf{i}}, \mathbf{p}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ij} k} \mathbf{p}_{\mathrm{k}}$. $\begin{aligned} & \text { This will become the definition of a "vector operator" } \square \\ & \text { with respect to } \mathbf{L} \text { ! }\left[\left[\text { vector }=1^{\text {st }} \text { rank tensor] }\right.\right.\end{aligned}$
Nonlecture: Verify claim for 1 of $3 \times 3=9$ possible cases

$$
\text { let } \mathrm{i}=\mathrm{x}, \mathrm{j}=\mathrm{y}
$$

$$
\begin{aligned}
{\left[\mathbf{L}_{x}, \mathbf{p}_{y}\right] } & =\left[\mathbf{y p}_{z}-\mathbf{z} \mathbf{p}_{y}, \mathbf{p}_{y}\right]=\mathbf{y}\left[\mathbf{p}_{z}, \mathbf{p}_{y}\right]+\left[\mathbf{y}, \mathbf{p}_{y}\right] \mathbf{p}_{z}-\mathbf{z}\left[\mathbf{p}_{y}, \mathbf{p}_{y}\right]-\left[\mathbf{z}, \mathbf{p}_{y}\right] \mathbf{p}_{y} \\
& =0+i \hbar \mathbf{p}_{z}-0-0
\end{aligned}
$$

Now check this using $\varepsilon_{i \mathrm{ijk}}$

$$
\begin{aligned}
{\left[\mathbf{L}_{x}, \mathbf{p}_{y}\right]=\mathrm{i} \hbar \sum_{k} \varepsilon_{\mathrm{x} \times \mathrm{k}} \mathbf{p}_{\mathrm{k}} } & =\mathrm{i} \hbar\left[\varepsilon \varepsilon_{\mathrm{x}} \mathbf{p}_{\mathrm{x}}+\varepsilon / /_{y} \mathbf{p}_{\mathrm{y}}+\varepsilon_{\mathrm{xy}} \mathbf{p}_{z}\right] \\
& =\mathrm{i} \hbar \mathbf{p}_{z} . \quad \text { OK }
\end{aligned}
$$

All other 8 cases go similarly. Feel the power of $\varepsilon_{i j k}$!
Other important Commutation Rules

$$
\left.\begin{array}{l}
{\left[\mathbf{L}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{p}_{\mathrm{k}}} \\
{\left[\mathbf{L}_{\mathbf{i}}, \mathbf{q}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{k}}}
\end{array}\right\} \begin{aligned}
& \text { general definition of } \\
& \text { a"vector" operator }
\end{aligned}
$$

$\overrightarrow{\mathbf{q}}$ and $\overrightarrow{\mathbf{p}}$ are examples of vector operators. Classify as vectors with respect to \mathbf{L} !

$$
\left[\mathbf{L}_{\mathbf{i}}, \mathbf{L}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}}
$$

general definition of an "angular
momentum." Works even for spin
where a $\mathbf{q} \times \mathbf{p}$ definition cannot
exist. This is the MOST
IMPORTANT STEP
All angular momentum matrix elements will be derived next lecture from these commutation rules.

$$
\begin{gathered}
{\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}} \text { is identical to }} \\
\mathbf{L} \times \mathbf{L}=\mathrm{i} \hbar \mathbf{L} \mathbf{L} \\
\left(\text { expect } 0!\text { because vector cross product }|\vec{A} \times \vec{B}|=|A||B| \sin \theta_{A B}\right) \\
\mathbf{L} \times \mathbf{L}=\left(\begin{array}{cc}
\hat{\mathbf{i}} & \hat{\mathrm{j}} \\
\mathbf{L}_{\mathrm{x}} & \hat{\mathrm{~L}} \\
\mathbf{L}_{\mathrm{y}} \\
\mathbf{L}_{\mathrm{x}} & \mathbf{L}_{\mathrm{y}} \\
\mathbf{L}_{\mathrm{z}} \\
\mathbf{L}_{\mathrm{z}}
\end{array}\right)=\hat{\mathrm{i}}\left(\mathbf{L}_{\mathrm{y}} \mathbf{L}_{\mathrm{z}}-\mathbf{L}_{\mathrm{z}} \mathbf{L}_{\mathrm{y}}\right)+\hat{\mathrm{j}}\left(\begin{array}{c}
\text { notereversal of x and } \\
\text { terms } \\
\left.\mathbf{L}_{\mathrm{z}} \mathbf{L}_{\mathrm{x}}-\mathbf{L}_{\mathrm{x}} \mathbf{L}_{\mathrm{z}}\right)+\hat{\mathrm{k}}\left(\mathbf{L}_{\mathrm{x}} \mathbf{L}_{\mathrm{y}}-\mathbf{L}_{\mathrm{y}} \mathbf{L}_{\mathrm{x}}\right) \\
=\mathrm{i} \hbar\left[\hat{\mathrm{i}} \mathbf{L}_{\mathrm{x}}+\hat{\mathrm{j}} \mathbf{L}_{\mathrm{y}}+\hat{\mathrm{k}} \mathbf{L}_{\mathrm{z}}\right]=\mathrm{i} \hbar \mathbf{L}
\end{array}\right.
\end{gathered}
$$

This vector cross product definition of \mathbf{L} is more general than $\mathbf{q} \times \mathbf{p}$ because there is no way to define spin in $\mathbf{q} \times \mathbf{p}$ form but $\mathbf{S} \times \mathbf{S}=\mathrm{i} \hbar \mathbf{S}$ is quite meaningful.

Can one generalize that, if $\mathbf{L} \times \mathbf{L}=\mathrm{i} \hbar \mathbf{L}$ (instead of 0), and the $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]$ and $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{j}}\right]$ commutation rules have similar forms, that $\mathbf{L} \times \mathbf{p}=\mathrm{i} \hbar \mathbf{p}$? NO! Check for yourself!
2. Continued. use $\mathbf{p}_{r}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar)$

$$
\begin{aligned}
& \text { already know that this commutes with } \mathbf{L}_{i} \\
& {\left[\mathbf{L}_{z}, \mathbf{p}_{\mathbf{r}}\right]=\mathbf{r}^{\mathbf{v}_{1}} \overrightarrow{\mathbf{q}} \cdot\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{p}}\right]+\mathbf{r}^{-1}\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{q}}\right] \cdot \overrightarrow{\mathbf{p}}} \\
& \text { evaluate the first term }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sum of } 3 \text { terms }
\end{aligned}
$$

only one of these terms is nonzero (but use simpler form)
and evaluate the second term $\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{q}}\right] \cdot \overrightarrow{\mathbf{p}}$

$$
\begin{aligned}
{\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{q}}\right] } & =i \hbar \sum_{k}\left[\hat{i} \varepsilon_{i x k}+\hat{j} \varepsilon_{i y k}+\hat{k} \varepsilon_{i z k}\right] \mathbf{q}_{k} \\
{\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{q}}\right] \cdot \mathbf{p} } & =i \hbar \sum_{k}\left[\varepsilon_{i x k} \mathbf{q}_{k} \mathbf{p}_{x}+\varepsilon_{i y k} \mathbf{q}_{k} \mathbf{p}_{y}+\varepsilon_{i z k} \mathbf{q}_{k} \mathbf{p}_{z}\right]\left(\text { a } 2^{\text {nd }} \text {-index sum }\right)
\end{aligned}
$$

sum is over j and k, so
$\begin{aligned}=i \hbar \sum_{j, k} \varepsilon_{i j k} \mathbf{q}_{k} \mathbf{p}_{j} & =i \hbar \sum_{k, j} \varepsilon_{i \mathrm{k} \mathbf{j}} \mathbf{q}_{\mathrm{j}} \mathbf{p}_{\mathrm{k}} \quad \begin{array}{l}\text { can permute the } \mathrm{k} \\ \text { labels }\end{array} \\ & =-i \hbar \sum_{k, j} \varepsilon_{i \mathrm{ijk}} \mathbf{q}_{j} \mathbf{p}_{k} \quad \text { (2) }\end{aligned}$
putting Eqs. (1) and (2) together
$\overrightarrow{\mathbf{q}} \cdot\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{p}}\right]+\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{q}}\right] \cdot \overrightarrow{\mathbf{p}}=i \hbar \sum_{j, k}\left[\varepsilon_{i j k} \mathbf{q}_{j} \mathbf{p}_{k}-\varepsilon_{i j k} \mathbf{q}_{j} \mathbf{p}_{k}\right]=0!$
The 2 terms from the
$[\mathbf{L}, \mathbf{p} \cdot \mathbf{q}]$ are combined here.
Elegance and power of $\varepsilon_{\mathrm{ijk}}$ notation!
We have shown, for $\mathbf{p}_{r}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-i \hbar)$, that:

* $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}\right]=0$ for all i
* easy now to show $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}{ }^{2}\right]=0$

Finally $\left[\mathbf{L}_{i}, \mathbf{L}^{2}\right]=\sum_{j}\left[\mathbf{L}_{i}, \mathbf{L}_{j}^{2}\right]=\sum_{j}\left(\mathbf{L}_{j}\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]+\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right] \mathbf{L}_{j}\right]$

$$
=\sum_{j}\left[\mathbf{L}_{j}\left(i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}\right)+\left(i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}\right) \mathbf{L}_{j}\right]
$$

sum is over j and k , so can permute the j \& kindices same trick: permute $\mathrm{j} \leftrightarrow \mathrm{k}$ indices in second term Thus

$$
\varepsilon_{i \mathrm{ijk}}=-\varepsilon_{i k j}
$$

$$
-\left(i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{j}\right) \mathbf{L}_{k}
$$

$$
\left[\mathbf{L}_{i}, \mathbf{L}^{2}\right]=0
$$

But be careful: L_{i} and $L_{j}{ }^{2}$ do not commute even though L_{i} and L^{2} do commute

$$
\left[\mathbf{L}_{i}, \mathbf{L}_{\mathrm{j}}^{2}\right]=\mathbf{L}_{j}\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]+\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right] \mathbf{L}_{j}=i \hbar\left(\mathbf{L}_{j} \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}+\left(\sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}\right) \mathbf{L}_{j}\right) \neq 0
$$

because this is a sum only over k , can't combine and cancel terms. See detail on next page.

$$
\begin{aligned}
& \text { for } \mathrm{i}=\mathrm{x}, \mathrm{j}=\mathrm{y} \\
& {\left[\mathbf{L}_{x}, \mathbf{L}_{y}^{2}\right]=\mathbf{L}_{y}\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right]+\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right] \mathbf{L}_{y}=i \hbar\left[\mathbf{L}_{y} \mathbf{L}_{z}+\mathbf{L}_{z} \mathbf{L}_{y}\right] \neq 0}
\end{aligned}
$$

so we have shown

$$
\left[\mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}}\right]=0
$$

$$
\left[\mathbf{L}^{2}, \mathrm{f}(\mathbf{r})\right]=0
$$

$$
\left[\mathbf{L}_{\mathrm{i}}, \mathrm{f}(\mathbf{r})\right]=0
$$

$$
\left[\mathbf{L}^{2}, \mathbf{p}_{\mathrm{r}}\right]=0
$$

$$
\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}\right]=0
$$

$\therefore \mathbf{L}^{2}, \mathbf{L}_{\mathbf{i}}, \mathbf{H}$ all commute - Complete Set of Mutually Commuting Operators

> eigenfunction of \mathbf{L}^{2} with
> eigenvalue $\hbar^{2} L(L+1)$

So what does this tell us about $\langle\mathbf{L}| \mathbf{H}\left|\mathrm{L}^{\prime}\right\rangle=$? also $\left\langle M_{L}\right| \mathrm{H}\left|M^{\prime}{ }_{L}\right\rangle$

$$
L_{z}\left|L M_{L}\right\rangle=\hbar M_{L}\left|L M_{L}\right\rangle
$$

BLOCK DIAGONALIZATION OF H!
Both $H_{L L^{\prime}}=0$ and $H_{M_{L}, M_{L}^{\prime}}=0$
Basis functions

$$
\psi=\underset{\substack{\text { radial } \\ \text { special }}}{\chi(\mathrm{r})}|\underbrace{\left.\mathrm{L}^{2}, \mathrm{~L}_{\mathrm{Z}}\right\rangle}_{\substack{\text { angular } \\ \text { universal }}}=| \mathrm{nLM}_{\mathrm{e}}\rangle
$$

Next time I will show, starting from

$$
\begin{array}{ll}
& {\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}} \\
* & \mathbf{L}^{2}\left|n \mathrm{~L} M_{L}\right\rangle=\hbar^{2} \mathrm{~L}(\mathrm{~L}+1)\left|n \mathrm{~L} M_{L}\right\rangle \quad \mathrm{L}=0,1, \ldots \\
* & \mathbf{L}_{z}\left|n \mathrm{~L} M_{L}\right\rangle=\hbar M_{L}\left|n \mathrm{~L} M_{L}\right\rangle \quad M_{L}=-L,-L+1, \ldots+L
\end{array}
$$

also derive all \mathbf{L}_{x} and \mathbf{L}_{y} matrix elements in $\left|n L M_{L}\right\rangle$ basis set.

Translation and Rotation Operators

We are interested in QM operators that cause translation or rotation of an initially localized state: $\left|x_{0}, y_{0}, z_{0}\right\rangle$ or $\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle$ (where α, β, γ are Euler angles that relate the body-fixed axis system to the laboratory-fixed axis system.

Translations are related to $\hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}$ operators and rotations are related to $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$ operators. How do we demonstrate these relationships?

Begin by asking what does $e^{-i \hat{p}_{x} \delta / \hbar}$ do to an initially localized state $\left|\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\rangle$.

An initially localized state is an eigenfunction of $\hat{x}, \hat{y}, \hat{z}$ operators

$$
\begin{aligned}
& \hat{x}\left|x_{0}, y_{0}, z_{0}\right\rangle=x_{0}\left|x_{0}, y_{0}, z_{0}\right\rangle \\
& \text { similarly for } \hat{y} \text { and } \hat{z}
\end{aligned}
$$

What does $e^{-i \hat{p}_{x} \delta / \hbar}$ do to $\left|x_{0}, y_{0}, z_{0}\right\rangle$? We want to know to what eigenvalue(s) of \hat{x} does $e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle$ belong? We ask for $\hat{x}\left[e^{-\hat{i}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle\right]$ and we use the commutation rule $\left[\hat{x}, f\left(\hat{p}_{x}\right)\right]=i \hbar \frac{d f}{d p_{x}}$

$$
\begin{gathered}
\hat{x}\left[e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle^{d p_{x}}=\left(e^{-i \hat{p}_{x} \delta / \hbar} \hat{x}+\left[\hat{x}, e^{-i \hat{p}_{x} \delta / \hbar}\right]\right)\left|x_{0}, y_{0}, z_{0}\right\rangle\right. \\
f\left(\hat{p}_{x}\right)=e^{-i \hat{p}_{x} \delta / \hbar} \\
\frac{d \hat{f}}{d p_{x}}=(-i \delta / \hbar) e^{-i \hat{p}_{x} \delta / \hbar} \\
{\left[\hat{x}, f\left(\hat{p}_{x}\right)\right]=(i \hbar)(-i \delta / \hbar) e^{-i \hat{p}_{x} \delta / \hbar}=\delta e^{-i \hat{p}_{x} \delta / \hbar}}
\end{gathered}
$$

Put it all together:

$$
\begin{aligned}
& \hat{X}\left[e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle\right]=e^{-i \hat{p}_{x} \delta / \hbar}\left[x_{0}+\delta\right]\left|x_{0}, y_{0}, z_{0}\right\rangle \\
& \hat{x}\left[e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle\right]=\left(x_{0}+\delta\right)\left[e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle\right]
\end{aligned}
$$

This means that $e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle$ belongs to the $\left(x_{0}+\delta\right)$ eigenvalue of \hat{x} !

$$
e^{-i \hat{p}_{x} \delta / \hbar}\left|x_{0}, y_{0}, z_{0}\right\rangle=\left|x_{0}+\delta, y_{0}, z_{0}\right\rangle
$$

So we know how to build an operator that causes translations of a localized state in the x, y, or z directions: $\hat{T}_{x}, \hat{T}_{y}, \hat{T}_{z}$.

But we know that $\left[\hat{p}_{i}, \hat{p}_{j}\right]=0$ for all components of linear momentum. This means that for all linear translations, $\left[\widehat{T}_{i}, \widehat{T}_{j}\right]=0$. The sequence of the linear translations does not matter! What about rotations of the initially localized state| $\left.\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle$? What does $e^{-i \phi \hat{L}_{z} / \hbar}$ do to $\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle$?

Consider

$$
\hat{\alpha}\left[e^{-i \phi \hat{L}_{z} / \hbar}\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle\right] .
$$

Following an argument similar to that for the translational operators

$$
\hat{\alpha} e^{-i \phi \hat{L}_{z} / \hbar}\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle=\left(\alpha_{0}+\phi\right) e^{-i \phi \hat{L}_{z} / \hbar}\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle
$$

$\hat{\alpha} e^{-i \phi \hat{L}_{z} / \hbar}\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle$ belongs to the $\alpha_{0}+\phi$ eigenvalue of $\hat{\alpha}$.
Now show something beautiful: that infinitesimal rotations about different axes do not commute!
$e^{-i \phi \hat{L}_{z} / \hbar} e^{-i \theta \hat{L}_{y} / \hbar}\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle=\left(e^{-i \theta \hat{L}_{y} / \hbar} e^{-i \phi \hat{L}_{z} / \hbar}+\left[e^{-i \phi \hat{L}_{z} / \hbar}, e^{-i \theta \hat{L}_{y} / \hbar}\right]\right)\left|\alpha_{0}, \beta_{0}, \gamma_{0}\right\rangle$

Expand the exponentials for infinitesimal $\theta, \phi: 1^{\text {st }}$ two terms in the power series expansion of $\mathrm{e}^{-\mathrm{i} \alpha}: 1-\mathrm{i} \alpha$.

$$
\begin{aligned}
{\left[e^{-i \theta \hat{L}_{y} / \hbar}, e^{-i \phi \hat{L}_{z} / \hbar}\right] } & =[1,1]-\left[1,-i \phi \hat{L}_{z} / \hbar\right]+\left[-i \theta \hat{L}_{y} / \hbar, 1\right]-\left(-\frac{i}{\hbar}\right)\left[\phi \hat{L}_{z}, \theta \hat{L}_{y}\right] \\
& =0+0+0+\left(-\frac{i}{\hbar}\right)(\phi \theta) i \hbar \hat{L}_{x}
\end{aligned}
$$

Reversing the order of the rotations about the y and z axes results in a non-zero rotation by $\theta \phi$ about the x-axis!

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

