Quiz 31 ANSWERS

1.

The sp^{2} configuration gives rise to ${ }^{2} \mathrm{D},{ }^{2} \mathrm{P},{ }^{4} \mathrm{P}$, and ${ }^{2} \mathrm{~S}$ L-S states. The degeneracy of an $\mathrm{L}-\mathrm{S}$ state is $(2 \mathrm{~S}+1)(2 \mathrm{~L}+1)$. There are six np spin-orbitals and two ns spin-orbitals. The Pauli principle prohibits putting two electrons into the same spin-orbital.
A. What is the total degeneracy of the sp^{2} configuration?

$$
2 \cdot \frac{6 \cdot 5}{2}=\frac{60}{2}=30
$$

B. What is the sum of the degeneracies of the $\mathrm{L}-\mathrm{S}$ states that arise from sp^{2} ?
${ }^{2} \mathrm{D}=10,{ }^{2} \mathrm{P}=6,{ }^{4} \mathrm{P}=12,{ }^{2} \mathrm{~S}=2$
Sum: $10+6+12+2=30$
C. What is the maximum possible value of M_{L} among all of the $\mathrm{L}-\mathrm{S}$ states of sp^{2} ?
$\mathrm{L}_{\text {MAX }}=2 \quad \mathrm{M}_{\mathrm{L}_{\text {MAX }}}=2$
D. Write one of the two 3-electron Slater determinant that corresponds to maximum M_{L}.
$\|p 1 \alpha p 1 \beta s 0 \alpha\|$ and $\|p 1 \alpha p 1 \beta s 0 \beta\|$
E. The maximum M_{S} value is $3 / 2$. What is the maximum M_{L} value compatible with $\mathrm{M}_{\mathrm{S}}=3 / 2$? Write the unique Slater determinant that corresponds to this $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ pair. $\mathrm{M}_{\mathrm{s}}=3 / 2$ comes from a quartet state. There is only one quartet state: ${ }^{4} \mathrm{P}$

$$
M_{s_{\mathrm{MAX}}}=3 / 2 \quad M_{L_{\mathrm{MAX}}}=1 \quad\|p 1 \alpha p 0 \alpha s 0 \alpha\|
$$

F. $\quad \mathbf{L}^{2}=\frac{1}{2}\left(\mathbf{L}_{+} \mathbf{L}_{-}+\mathbf{L}_{-} \mathbf{L}_{+}\right)+\mathbf{L}_{z}^{2}$.

Is $\|s 0 \alpha p 1 \alpha p 1 \beta\|$ an eigenstate of \mathbf{L}^{2} ? If so, what is its eigenvalue?
$\mathbf{L}_{z}^{2}| | s 0 \alpha p 1 \alpha p 1 \beta| |=\hbar \mathbf{L}_{z}(2)| | s 0 \alpha p 1 \alpha p 1 \beta| |=\hbar^{2} 4| | s 0 \alpha p 1 \alpha p 1 \beta| |$
$\mathbf{L}_{+} \mathbf{L}_{-}\|s 0 \alpha p 1 \alpha p 1 \beta\|=\hbar \mathbf{L}_{+}\left(\|s 0 \alpha p 0 \alpha p 1 \beta\|(2)^{1 / 2}+\|s 0 \alpha p 1 \alpha p 0 \beta\| 2^{1 / 2}\right)$ $=\hbar^{2}(2+2)| | s 0 \alpha p 1 \alpha p 1 \beta \|$
$\mathbf{L}_{-} \mathbf{L}_{+}\|s 0 \alpha p 1 \alpha p 1 \beta\|=0$
$\mathbf{L}^{2}| | s 0 \alpha p 1 \alpha p 1 \beta \|=\hbar^{2}\left(4+\frac{4}{2}\right)| | s 0 \alpha p 1 \alpha p 1 \beta| |$
Therefore this Slater determinant belongs to $L=2$ because $\mathbf{L}^{2}|L=2\rangle=$ $\hbar^{2}(2)(3)=6 \hbar^{2}$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

