5.73

Quiz 31 ANSWERS

1.

The sp² configuration gives rise to ²D, ²P, ⁴P, and ²S L–S states. The degeneracy of an L–S state is (2S + 1)(2L + 1). There are six np spin-orbitals and two ns spin-orbitals. The Pauli principle prohibits putting two electrons into the same spin-orbital.

- A. What is the total degeneracy of the sp² configuration? $2 \cdot \frac{6 \cdot 5}{2} = \frac{60}{2} = 30$
- B. What is the sum of the degeneracies of the L–S states that arise from sp²? $^{2}D = 10, ^{2}P = 6, ^{4}P = 12, ^{2}S = 2$ Sum: 10 + 6 + 12 + 2 = 30
- C. What is the maximum possible value of M_L among all of the L–S states of p^2 ? $L_{MAX} = 2$ $M_{L_{MAX}} = 2$
- D. Write one of the two 3-electron Slater determinant that corresponds to maximum M_L .

 $\|p |\alpha p |\beta s 0 \alpha\|$ and $\|p |\alpha p |\beta s 0 \beta\|$

E. The maximum M_S value is 3/2. What is the maximum M_L value compatible with $M_S = 3/2$? Write the unique Slater determinant that corresponds to this M_L , M_S pair.

$M_s = 3/2$ comes from	om a quartet state.	There is only one quartet state: ⁴ P
$M_{s_{MAX}} = 3/2$	$M_{L_{\text{MAX}}} = 1$	$p1\alpha p0\alpha s0\alpha$

F.
$$\mathbf{L}^{2} = \frac{1}{2} (\mathbf{L}_{+} \mathbf{L}_{-} + \mathbf{L}_{-} \mathbf{L}_{+}) + \mathbf{L}_{z}^{2}.$$
Is $||s0\alpha p1\alpha p1\beta||$ an eigenstate of \mathbf{L}^{2} ? If so, what is its eigenvalue?

$$\mathbf{L}_{z}^{2} ||s0\alpha p1\alpha p1\beta|| = \hbar \mathbf{L}_{z}(2) ||s0\alpha p1\alpha p1\beta|| = \hbar^{2} 4 ||s0\alpha p1\alpha p1\beta||$$

$$\mathbf{L}_{+} \mathbf{L}_{-} ||s0\alpha p1\alpha p1\beta|| = \hbar \mathbf{L}_{+} (||s0\alpha p0\alpha p1\beta||(2)^{1/2} + ||s0\alpha p1\alpha p0\beta||2^{1/2})$$

$$= \hbar^{2}(2+2) ||s0\alpha p1\alpha p1\beta||$$

$$\mathbf{L}_{-} \mathbf{L}_{+} ||s0\alpha p1\alpha p1\beta|| = 0$$

$$\mathbf{L}^{2} ||s0\alpha p1\alpha p1\beta|| = \hbar^{2} \left(4 + \frac{4}{2}\right) ||s0\alpha p1\alpha p1\beta||$$
Therefore this Slater determinant belongs to $\mathbf{L} = 2$ because $\mathbf{L}^{2} |\mathbf{L} = 2\rangle = \hbar^{2}(2)(3) = 6\hbar^{2}.$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.