
 
  

 

 
 

  

       

  

  

 
 

  

    
 

   

 

    
       

   
 

5.73 Lecture #31 31 - 1 
Matrix Elements of One-Electron, F(i), and Two-Electron, G(i,j), 

Last time: 
Operators 

orbitals → configurations → states (“terms”) 
Fermions: Slater Determinants: Pauli Exclusion Principle 

Compact Notation for Slater Determinant: main diagonal . 

TODAY: 1. SLATER DETERMINANTAL MATRIX ELEMENTS 
A. Normalization 

a( )ri ℓ i∑– H SOB. F(i):  One-e  operator e.g. ⋅si = 
i 

∑ 
i j> 

2C. G(i, j): Two-e–  operator e.g. He = e rij 

Recall: specify a standard order of spin-orbitals (because determinant changes sign 
upon every binary permutation) 

Goal: make the inconvenience of Slater determinants almost vanish — matrix 
elements will be almost what you expect for simple non-antisymmetrized 
products of spin-orbitals. 

pages 31-2,3,4 are repeat of pages 30-6, 7, 8 

)−1/ 2 uN (N) ] anti-symmetrizedA. Normalization: ψ N = (N! ∑ (−1)p℘[ u1(1) … 
℘ product of spin-orbitals 

verify that (N!)–1/2 is the correct factor 

= (N !)−1 ∑ (−1) p+ p′℘⎡⎣ u1(1) … uN (N ) u1(1) … uN (N )ψ N ψ N 
⎤⎦℘′ ⎡⎣ ⎤⎦ 

℘,℘′ 

rearrange into products of one-e-  overlap integrals: 
N 

= (N !)−1 ∑ (−1) p+ p′∏ Pi ′uiPiui 
℘,℘′ i=1 

* { } are orthonormalui 

* u(i) u( j) has no meaning because bra and ket must be associated with 
the SAME electron 

* only non-zero LEGAL terms in ∑ are those where EACH Pi = Pi ′ , 
℘℘′ 

otherwise get AT LEAST 2 MISMATCHED bra-kets 
ui (k) uj (k) … uj (ℓ) ui (ℓ) 
= 0 = 0 

(Here the electron names match in each bra-ket but the spin-orbital names do 
not match.) 

Think of a one- or two-e– operator as a scheme for “dealing with” or “hiding” the 
small number of mismatched spin-orbitals. 
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5.73 Lecture #31 31 - 2 

Thus it is necessary that ℘ =℘′, p = p′,(−1) p+ p′ = +1 

and = (N !)−1∑℘⎡⎣ µ1(1) µ1(1) … µN (N ) µN (N ) ⎤⎦.ψ N ψ N 
℘ = 1 = 1 

Each term in the sum over ℘ gives +1, but there are N possibilities 
for P1, N – 1 possibilities for P2, N2 – 2 possibilities for P3 … 

∴ N ! possibilities for sum over ℘ 

= (N !)−1∑1 = 1ψ N ψ N 
℘ 

Thus the assumed (N!)–1/2 normalization factor is correct. 

B. Matrix elements of one-electron operators 

F = ∑ f (ri ) e.g L 
! 
= ∑
! 
ℓ i 

i i 

)−1/ 2 ) pψ A ≡ ( N ! ∑ (−1 ℘ a1 (1) … aN (N ) 
℘ 

)−1/ 2 p′ 
ψ B ≡ ( N ! ∑ (−1) ℘′ b1 (1) … bN (N ) 

℘′ 

)−1 ) p+ 
Fψ B = (N ! ∑ (−1 

p′ 
℘[ a1(1) …]f ( )℘′ b1(1) …]ψ A ri [ 

)
i ,℘,℘′ 

−1 ) p+ 
= (N ! ∑ (−1 

p′ [ P1a1(1) P1b1(1) ]
i ,℘,℘′ 

⎡ ( ) (i) ⎤ … 
⎣⎢ 

Piai (i) f ri Pi ′bi ⎦⎥
…[ PNaN (N ) PN ′ bN (N ) ] 

Product of N orbital matrix element factors in each term of sum. Of these, N–1 are 
orbital overlap integrals and only one involves the one-e – operator. 
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5.73 Lecture #31 31 - 3 
F = 0 if and differ by more than one spin-orbital 

(at least one of the orbital overlap integrals in the N-term product would 
be zero) 

1. SELECTION RULE Ψ A ΨB ψ A ψB 

two cases remain: 

2. |ΨA〉 and |ΨB〉 differ by one spin-orbital 

ψ A = u1(1)…ak (k)…uN (N ) the mismatched orbitals 
⎫⎪
⎬ 

ψ B = u1(1)…bk(k)…uN (N ) ⎪⎭ are in the same position 

use ui to denote the in-common spin-orbitals 
use ak, bk ≠ 0 to denote unique spin-orbitals 

For this choice, all N Pi factors of each ℘ must be identical to all N Pi ′ factors of ℘′ 

Additional requirement: ℘ must bring mismatched orbital pairs into i-th position 
so that they match up with the f(ri) operator to give ak (i) f ri( )bk (i) 

ANY OTHER ARRANGEMENT GIVES 

ak" 
(ℓ) bk (ℓ) (i)ui"

f (ri ) ui (i) = 0 
$#$$% $$#$$% 

=0 ≠0 

(N – 1)! ways of arranging the e– in the other N – 1 matched orbital pairs, 
and there are N identical terms (in which the e– is in the privileged location) 
in the sum over i 

)−1
F = ( N ! ( N −1)!N fψ A ψ B ak bk 
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5.73 Lecture #31 31 - 4 
If the order of spin-orbitals in ψA or ψB must be arranged away from the 
standard order in order to match the positions of ak and bk, then we get an 
additional factor of (–1)p where p is the number of binary permutations 

ψ F
A 

ψ
B 

= 
p

−1( ) a
k 

f b
k 

i.e. A= 12 5 7 
B = 12 35 = − 12 5 3 

for a difference 
of one 
spin-orbital 

a many-e– integral is reduced to aF = − 7 f 3ψ A ψ B single spin-orbital integral 

3. ψA = ψB Differ by zero spin-orbitals 

ψ A F = (ψ A 
)−1

N ! ∑ ⎡
⎣ Piai (i) f ( ) Piri ai (i) ⎤

⎦
i,℘ all other factors are =1 

N! identical terms from sum over ℘ [again from (N – 1)!N] 

F = ∑ f ( ) aiψ A ψ B ai ri 
i 

* Normalization 
and 

* 1- e−  Operator F 

⎫ 
⎪
⎬ 
⎪
⎭ 

comes out almost the same as naive 
expectation WITHOUT need to deal with 
antisymmetrization! 

3α1α − 2αExamples of f3: ψ = 

Lz = !(3 +1− 2) 
3LzSz = !2 ( 2 + 1

2 −1) 
3α1α − 2α 3α1α − 2α 3α1α − 2α= L+ + S+J+ 

= ! 0 +101/2 +101/2 3α 2α − 2α 3α1α −1α + 0 + 0 + 0⎤⎦⎡⎣ 
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5.73 Lecture #31 31 - 5 
now G(i,j): A two-electron operator 

C. G(i,j) : 4 cases 
1. differ by more than 2 spin-orbitals: Matrix Element → 0 
2. differ by 2 spin-orbitals: sum includes one pair of nonzero matrix elements 
3. differ by 1 spin-orbital: sum over pairs of nonzero single spin-orbital 

matrix elements 
4. expectation value : differ by 0 spin-orbitals: double sum over pairs of spin-

orbital matrix elements 

1. is obvious — only way to make up for orbital mismatch is to hide the 
mismatched orbitals in 〈|g(i,j)|〉 (rather than in an overlap integral). But one 
can only hide 2-mis-matched pairs in, e.g. 

g(i, j)aia j bibj 

= 0 if ψA, ψB differ by more than 2 spin-orbitalsG(i, j) ψ Bψ A 

2. differ by two pairs of spin-orbitals 

ψ A = u1 (1)… a1 (i)… a2(j)…uN (N ) 

ψ B = (−1) p u1 (1)… b1(i)…b2(j)…uN (N ) 

number of permutations needed to 
put b1 and b2 in the i and j positions 

)−1 
p′ψ 

A 
G = (N ! ∑ ∑ (−1)p+ ⎡⎣orthogonality integrals⎤⎦ ×ψ

B 
i> j ℘,℘′ 

⎡ Pa (i) P
j
a

2
( j) g(i, j) P′b (i) P′b ( j) ⎤⎦i 1 i 1 j 2⎣ 

* there are (N – 2)! ways of permuting the N – 2 matched uk functions 
that are not filled with e – i and j. Moreover these permutations must 
involve Pk = P′ k (for all k ≠ i,j). 

* also N(N – 1) identical terms in sum over i > j 
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5.73 Lecture #31 31 - 6 
Thus there are ( N − 2)!( N −1) N = N ! identical terms in the ∑ ∑ sums. 

i> j ℘,℘′ 

But there still remain two possibilities: 

1. ℘ =℘′ ∴ p = p′ and Pi = Pi ′, Pj = P′ j 
2. ℘ same as ℘′ except for i, j pair where 

( p′) p+ 
−1 = −1 

The 2 ℘’s must differ by exactly one binary 
permutation 

Pi = ′Pj 

Pj = ′Pi 

THIS MEANS WE 
PUT THE jth e – in 
P′ j where WE HAD 
PUT THE ith e – in Pi 

THUS: ψ
A 

G ψ = ± ⎡⎣ a
1
(1)a (2) g(1,2) b (1)b (2) 

2 1 2 
− a

1
(1)a (2) g(1,2) b (1)b (2) 

2 2 1 
⎤
⎦B 

For ψA,ψB 
different by 2 spin-
orbitals: 

# of permutations needed to make ψB match 
ψA — no sign ambiguity if standard order is 
initially specified 

3. ψA,ψB differ by only one pair of spin-orbitals 

You work this out [(a matched with u ),
(a, b matched) un matched with b] 

n 

G ψB = ± ∑ ⎡ a(1)u (2) g(1,2) b(1)u (2) − a(1)u (2) g(1,2) u (1)b(2) ⎤ψ A ⎣ n n n n ⎦ 
n (a with un)n≠1,2 

not arbitrary 

4. differ by zero spin-orbitals : expectation value of G 

G ψ A = ∑ [ un(1)um (2) g(1,2)un(1)um (2) − un(1)um (2) g(1,2)um (1)un (2) ]ψ A 
n> m 

“DIRECT” “EXCHANGE” 

what we would expect without unexpected: consequence 
antisymmetrization of antisymmetrization 
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5.73 Lecture #31 31 - 7 
The ONLY real surprise that results from the anti-symmetrization 
requirement for two-electron operators is the presence of one additional term 
and some signs that would have no counterpart if anti-symmetrization had 
been ignored. 

SUMMARY 
* antisymmetrize → Slater determinants 
* matrix elements are only slightly more complicated than those of a simple 

product of spin-orbitals 
•signs due to permutation [away from Standard Order] 
•extra terms in matrix elements of G(i,j) 

Do some examples for p2: 

1. What L,S terms belong to p2 (Lecture #32: method of crossing out microstates)? 
2. What is the correct linear combination of Slater determinants that corresponds to 

a specific L-S term in either the ⎜JLSMJ〉 or the ⎜LMLSMS〉 basis set? 

Methods: 

•ladders plus orthogonality (Lecture #32) 
•L2 and S2 matrices (Lecture #33) 
•3-j coefficients 

3. e2/rij → Fk(nℓ,n’ℓ’), Gk(nℓ,n’ℓ’) “Slater-Condon” parameters 
Relative energies of L-S terms expressed in terms of Fk and Gk’s. (Lecture #34) 

4. Matrix elements of HSO (Lecture #35) 

• �(NLS): coupling constant for an N–L–S state 
• �(NLS)⟷�nℓ: relation of �(NLS) to orbital integrals 
• full HSO in terms of �nℓ 
• periodic table explains the �nℓ, but the �(NLS) do not directly display 

periodicity. WHAT WE WANT IS ENCODED IN WHAT WE CAN 
OBSERVE 
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5.73 Lecture #31 31 - 8 

EXAMPLES: 

Slater Determinant: 2p 1α1β → 1D = 2, MSM L = 0 

L = 1α1β L 1α1β z z 

= ![1+1] = 2! 
⎡ 1 ⎛ 1⎞ ⎤S = ! ⎢ + ⎝⎜ − ⎠⎟ ⎥ = 0! z ⎣ 2 2 ⎦ 

2 2 2L tricky! L = ∑ ℓ + ∑ ℓ ℓ z z zi zi z j
i i≠ j 

1–e– 2–e– 

operator operatorThe only 2 terms in 
sum are 1,2 & 2,1 

L2 = !2 ⎡ℓ2 + ℓ2 ⎤⎦ + ∑ ⎡ 1α1β ℓ ℓ 1α1β − 1α1β z zi z j⎣ z1 z2 
i≠ j ⎣⎢ 

 
 

 
  

 

 

        

  

    

    

 

 
 

 
 

    
 

     

from spin-mismatch 

= 2!2 + !2 ⎡⎣12 +12 − 0 − 0 = 4!2  as expected⎤⎦ 
⎡ 1 1 ⎤ ⎡ 1 1 ⎤ 

Easier to do this by 
applying L z = ∑ ℓ zi

i 

twice 

⎤ℓ ℓ 1β1α zi z j ⎦⎥ 

S2 = !2 + 
⎦⎥ 
+ !2 − − − 0 − 0

⎦⎥ 
= 0!2  as expected z ⎣⎢ 4 4 ⎣⎢ 4 4 

↓ ↓ 
�� �� 

L2 − L2 
z = L2 

x + L2 
y = 

2
1 (L+L− + L− L+) 

L2 = 
1 (L+ L− + L−L+ ) + L2 

2 z 

Can you show that L2 = !26 for 1 2 α1β of p2 ? 
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5.73 Lecture #31 31 - 9 

Patterns of Lowest-Lying States: “Aufbau” for adults! 

Atom C N O 

lowest config. 1s22s22p2 1s22s22p3 1s22s22p4

L-S terms 1S, 1D, 3P 4S, 2P, 2D 1S, 1D, 3P 

Lowest Term 3P0
4S3/2

3P2

(no fine structure) 

C N O 
excitation 
2p ¬ 2s 2s2p3 2s2p4 2s2p5

5,3S, 3,1P, 3,1D 4,2P, 2D, 2S 3,1P 
[5S2] [4P5/2] [3P2] 

3s ¬ 2p 2s22p2 3s 
3,1P 
[3P0] 

2s22p2 3s 
4,2P, 2D, 2S 

[4P1/2] 

2s22p3 3s 
5S, 3(D,P,S) 

[5S2] 

3d ¬ 2p 2s22p 3d 
3,1(F,D,P) 

2s22p2 3d 
2(G,F,D,D,D,P,P,S), 

4(F,D,P) 

2s22p3 3d 
5D, 3(GFFDDDPPS), 

1(GFFDDPPS) 

[3F2] [4P1/5] [5D0] 
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5.73 Lecture #31 31 - 10 
Energy Levels of Lowest and First Excited Configurations 

C N O 
1P1 119878 cm–1 

3S1 105800 
1D2 97878 
IP(2P1/2) 
3P2,1,0 

90878 
75256 1P1 189837 

3D3 
3D2 
3D1 

64088 
64093 
64092 

IP(3P0) 
4P1/2 
4P3/2 

117345 
88173 
88153 

3P0 
3P1 
3P2 

126266 
126340 
126266 

5S2 
1S0 

33735 
21648 

4P5/2 88110 IP(4S3/2) 
1S0 

109827 
33794 

2D2 10194 2P3/2,1/2 28840 1D2 15868 

Lowest 
Config-
uration 

3P2 
3P1 
3P0 

44 
16 

0 

2D3/2 
2D5/2 
4S3/2 

19231 2P0 

19223 2P1 

0 2P2 

226 
158 

0 

How does one begin to assign an atomic spectrum? You need predictions of 
the L-S-J symmetry of the electronic ground state (because all absorption 
spectra will originate from this ground state) and the symmetries of the 
upper states of the lowest energy allowed transitions to the expected lowest 
excited electronic configurations. This should be simple, right? 

The energy levels for C I, N I, and O I (the I denotes neutral, II denotes 
singly charged, III...) are tabulated in Atomic Energy Levels as Derived 
from the Analysis of Optical Spectra (NSRDS-NBS 35, volume 1) are 
available on-line. There are an enormous number of assigned energy levels 
listed in the tables. One thing should be immediately clear: there are no 
obvious patterns. The energy levels that belong to the same electronic 
configuration are often widely spaced. Where is the Periodic Table in all of 
this apparent complexity? 

The spin-orbit constants, z2p, for the 2p orbital in C, N, and O are: 29.0, 
53.7, and 151 cm-1 respectively (Lefebvre-Brion and Field, The Spectra and 
Dynamics of Diatomic Molecules, page 316, Elsevier, 2004). These spin-
orbit constants clearly exhibit the qualitative effects implicit in the Periodic 
Table. 
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5.73 Lecture #31 31 - 11 

Where is the periodic table in all of this? The electronic spectra and the energy 
level diagrams for C, N, and O atoms are complicated and, most importantly, there 
are no apparent relationships among them. You need a magic decoder to assign the 
spectra and another magic decoder to discover how the spectra relate to 
periodicity. The intra-configurational splittings due to matrix elements of the 1/rij 

inter-electronic repulsion term are enormous (in some cases comparable to the 
ionization energy) and do not follow any obvious pattern. The matrix elements of 1/rij 
are expressed in terms of Slater-Condon parameters (Fk and Gk). The two-electron Fk 

and Gk terms, one-electron orbital energies, and one-electron spin-orbit constants all 
exhibit recognizable and interpretable periodicity. To me, this is staggeringly 
beautiful and a large part of the reason I chose electronic spectroscopy as the core of 
my career research. 
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