5.73

Quiz 33 ANSWERS

- 1. Consider the nd^2 electronic configuration. Denote the 10 possible spin-orbitals as 2α , 2β , 1α , 1β , 0α , 0β , -1α , -1β , -2α , -2β , and use the above as the standard order.
 - A. Fill each of the M_L , M_S boxes on the diagram below with all of the appropriate nonzero Slater determinants.

$M_{\rm L}$	4	3	2	1	0
1		2α1α	2α0α	2α-1α 1α0α	2α-2α 1α-1α
0	2α2β	2α1β 2β1α	2α0β 0β2α 1α1β	2α-1β 2β-1α 1α0β 1β0α	2α-2β 2β-2α 1α-1β 1β-1α 0α0β

- B. What are all of the L-S terms that belong to nd²?

 ³F, ³P, ¹G, ¹D, ¹S
- C. The linear combination of the two Slater determinants in the $|M_L=3, M_S=0\rangle$ box that corresponds to the $|^1G\ M_L=3, M_S=0\rangle$ many-electron basis state is $2^{-1/2}[\|2\alpha 1\beta\| \|2\beta 1\alpha\|]$. Use orthogonality with the $|^1G\ 3\ 0\rangle$ basis state to derive the linear combination of two Slater determinants that corresponds to $|^3F\ 3\ 0\rangle$.

$$\begin{vmatrix} ^{1}G \ M_{L} = 3, M_{S} = 0 \end{vmatrix} = 2^{-1/2} \left[||2\alpha 1\beta|| - ||2\beta 1\alpha|| \right]$$
by orthogonality $|^{3}F \ M_{L} = 3, M_{S} = 0 \rangle = 2^{-1/2} \left[||2\alpha 1\beta|| + ||2\beta 1\alpha|| \right]$

D. Calculate $\langle {}^{1}G \ 3 \ 0 \ | \mathbf{H}^{SO} | {}^{3}F \ 3 \ 0 \rangle = \hbar^{2}\zeta_{nd}$ [?]. You need only consider $\mathbf{H}^{SO} = \sum_{i} \zeta_{nd} \ell_{iz} \mathbf{s}_{iz}$.

$$\langle {}^{1}G M_{L} = 3, M_{S} = 0 | \mathbf{H}^{SO} | {}^{3}F M_{L} = 3, M_{S} = 0 \rangle$$

$$= \zeta_{nd} \left[\langle || 2\alpha 1\beta || \ell_{z} \mathbf{s}_{z} || 2\alpha 1\beta || \rangle - \langle || 2\beta 1\alpha || \ell_{z} \mathbf{s}_{z} || 2\beta 1\alpha || \rangle$$

$$= \zeta_{nd} \hbar^{2} \left[2\left(\frac{1}{2}\right) + 1\left(-\frac{1}{2}\right) - 2\left(-\frac{1}{2}\right) - 1\left(\frac{1}{2}\right) \right]$$

$$= \zeta_{nd} \hbar^{2} \left[1 - \frac{1}{2} + 1 - \frac{1}{2} \right] = \zeta_{nd} \hbar^{2} 1$$

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.