5.73

Quiz 33 ANSWERS

1.

Consider the nd^{2} electronic configuration. Denote the 10 possible spin-orbitals as $2 \alpha, 2 \beta, 1 \alpha, 1 \beta, 0 \alpha, 0 \beta,-1 \alpha,-1 \beta,-2 \alpha,-2 \beta$, and use the above as the standard order.
A. Fill each of the $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ boxes on the diagram below with all of the appropriate nonzero Slater determinants.

1	4	3	2	1	0
$\mathbf{0}$	$2 \alpha 2 \beta$	$2 \alpha 1 \alpha$	$2 \alpha 0 \alpha$	$2 \alpha-1 \alpha$ $1 \alpha 0 \alpha$	$2 \alpha-2 \alpha$ $1 \alpha-1 \alpha$
$2 \beta 1 \alpha$	$2 \alpha 0 \beta$	$2 \alpha-1 \beta$ $2 \beta-1 \alpha$ $1 \alpha 2 \alpha$ $1 \alpha 1 \beta$	$2 \alpha 0 \beta$ $2 \beta-2 \alpha$ $1 \beta 0 \alpha$	$1 \alpha-1 \beta$ $1 \beta-1 \alpha$ $0 \alpha 0 \beta$	

B. What are all of the L-S terms that belong to nd^{2} ?
${ }^{3} \mathrm{~F},{ }^{3} \mathrm{P},{ }^{1} \mathrm{G},{ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}$
C. The linear combination of the two Slater determinants in the $\left|\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0\right\rangle$ box that corresponds to the $\left.\left.\right|^{1} \mathrm{G} \mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0\right\rangle$ many-electron basis state is $2^{-1 / 2}[| | 2 \alpha 1 \beta\|-\| 2 \beta 1 \alpha \|]$. Use orthogonality with the $\left.\left.\right|^{1} \mathrm{G} 30\right\rangle$ basis state to derive the linear combination of two Slater determinants that corresponds to $\left.\right|^{3} \mathrm{~F} 3$ $0\rangle$.

$$
\begin{aligned}
& \left|{ }^{1} \mathrm{G} M_{L}=3, M_{S}=0\right\rangle=2^{-1 / 2}[\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|] \\
& \text { by orthogonality } \left.\left.\right|^{3} \mathrm{~F} M_{L}=3, M_{S}=0\right\rangle=2^{-1 / 2}[\|2 \alpha 1 \beta\|+\|2 \beta 1 \alpha\|]
\end{aligned}
$$

D. Calculate $\left\langle\begin{array}{llll}{ }^{1} \mathrm{G} & 3 & 0 & \left|\mathbf{H}^{\text {SO }}\right| \\ { }^{3} \mathrm{~F} & 3 & 0\end{array}\right\rangle=\hbar^{2} \zeta_{\text {nd }}$ [?].

You need only consider $\mathbf{H}^{\text {so }}=\sum_{i} \zeta_{n d} \ell_{i z} \boldsymbol{s}_{i z}$.

$$
\begin{aligned}
\left\langle{ }^{1} \mathrm{G} \mathrm{M}_{L}\right. & \left.=3, M_{\mathrm{S}}=0\left|\mathbf{H}^{\mathrm{so}}\right|{ }^{3} \mathrm{~F} \mathrm{M}_{L}=3, M_{\mathrm{s}}=0\right\rangle \\
& =\zeta_{n d}\left[\left\langle\left\|\left|2 \alpha 1 \beta\left\|\ell_{z} \mathbf{s}_{z}\right\| 2 \alpha 1 \beta \|\right\rangle-\langle |\left|2 \beta 1 \alpha\left\|\ell_{z} \mathbf{s}_{z}\right\| 2 \beta 1 \alpha \|\right\rangle\right.\right.\right. \\
& =\zeta_{n d} \hbar^{2}\left[2\left(\frac{1}{2}\right)+1\left(-\frac{1}{2}\right)-2\left(-\frac{1}{2}\right)-1\left(\frac{1}{2}\right)\right] \\
& =\zeta_{n d} \hbar^{2}\left[1-\frac{1}{2}+1-\frac{1}{2}\right]=\zeta_{n d} \hbar^{2}{ }^{1}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

