
 
 

 
  
 

 
 
 

 
 
 

    
 

  
     

 
 

 
 

 
    

 

 
 

 
 

  
 

 
 

 
 

  
 

 
 

 
 

    
 

    
 

    
 

      
   

    
 

   
 

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I 
Fall, 2018 

Professor Robert W. Field 

Problem Set #9 

Reading: Angular Momentum Handouts 
C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator 

= ∓2−1/2 Vx ± iVy V±1 [ ]
V0 = Vz

Scalar product of two vector operators 

V •W = ∑ (−1)µ V−µ Wµ . 
µ 

Scalar product of two tensor operators 

(0) A1, A2T0 [ ] = ∑ (−1)µ Tµ 
(ω ) [A1]T(

– 
ω 
µ 

)[A2 ]. 
µ 

Problems: 

1. CTDL, page 1086, #2.

2. CTDL, page 1089, #7.

3. CTDL, page 1089, #8.

4. A. d orbitals are often labeled xy, xz, yz, z2, x2–y2.  These labels are Cartesian tensor 
components.  Find the linear combinations of binary products of x, y, and z that 
may be labeled as T(2) and T(2) . +2 0 

(Ω) 
B. There is a powerful formula for constructing an operator of any desired TM

spherical tensor character from products of components of other operators
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ω1ω2 Ω (ω1 ) A1 
(ω2 ) TM

(Ω )[A1, A2 ] = ∑ A µ1 ,M− µ1 , MTµ1 [ ]TM −µ1 [A 2 ] 
µ1 

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j 
coefficients as follows: 

⎛ j1 j2 j3 ⎞ ) j1 − j2 −m 3 )−1/2 AM
j1j

1
2j
M
3 

2 −M3 
⎜ ⎟ = ( −1 ( 2j3 + 1 . 
⎝ m1 m 2 m 3 ≡ −(m1 + m2 )⎠ 

Use the T(
M 
Ω) 

+2 0 [A1,A2] formula to construct the spherical tensor T(3) and T(3) 

components of f orbitals by combining products of linear combinations of 
Cartesian labeled d and p orbitals.  In other words, combine T(2) [x,y,z] with 
T(1)[x,y,z] to obtain TM 

(3) as a linear combination of products of 3 Cartesian 
components. 

5. Angular Momenta 

Consider a two-electron atom in the “electronic configuration” 3d4p.  The electronic 
states that belong to this configuration are 3F, 1F, 3D, 1D, 3P, and 1P.  There are (2ℓ1 + 1) 
(2ℓ2 + 1) (2s1 + 1) (2s2 + 1) = 60 spin-orbital occupancies associated with this 
configuration.  I am going to ask you to solve several angular momentum coupling 
problems, using 3-j coefficients and the Wigner-Eckart Theorem for states belonging to 
this configuration.  However, I do not expect you to consider the anti-symmetrization 
requirement that is the subject of lectures #30 - 36. 

Spin-orbitals in the uncoupled basis set are denoted by nℓmℓsms(i) where n is the 
principal quantum number and i specifies the name of the assumed-distinguishable 
electron.  Since s = 1/2 for all electrons, we can use an abbreviated notation for spin-
orbitals: ℓλα/β where α corresponds to ms = +1/2 and β to ms = –1/2.  The two-electron 

ℓ1λ1 (α β)1 ℓ2λ2 ( basis states are denoted α β , e.g. 3 −1α 2 −1β where the first three )2 

symbols are associated with e– #1 and the second three with e– #2. 

The many-electron quantum numbers L, ML, S, MS are related to the one-electron spin-
orbital quantum numbers by 

ML = ∑ λi 
i 

MS = ∑ σ i 
i 

and L and S must be constructed from the proper linear combination of spin-orbital basis 
states.  For example, 

3F ,ML = 4,MS = 1 = 33α 11α 



    
 

 
 

   
 
 

 
 

 
      

 
  

 
  

         
                   

 
 
        
 
    
 

 
 
    
 

 
 

   
  

 
 

 
	 

 

 
  

 
 
 

	 
 

 
 

     
   

 
   

Chemistry 5.73 Page 3 
Problem Set #9 

This is a problem that concerns the coupled↔uncoupled transformation, 

= ∑ Lℓ1ℓ2M L Lℓ1ℓ2M L ℓ1λ1ℓ2λ2 ℓ1λ1ℓ2λ2 
λ2 

where ML = λ1 + λ2 and ℓ2 ≤ ℓ1.  The same situation obtains for the spin part 

. Ss1s2M s = ∑ Ss1s2MS s1σ1s2σ2 s1σ1s2σ2 
σ2 

A. Use 3-j coefficients to derive the linear combination of six spin-orbital 
occupancies that corresponds to the ⎟ 3P0 MJ = 0〉 state.  The six basis states are 
⎟ 3–1α 11β〉 , ⎟ 3–1β 11α〉 , ⎟ 30α 10β〉 , ⎟ 30β 10α〉 , ⎟ 31α 1-1β〉 , and ⎟ 31β 1-1α〉 .  
Note that you will have to perform three uncoupled→coupled transformations: 

ℓ1λ1 ℓ1λ1 → L ℓ1 ℓ 2ML 

s1σ1s2σ2 → S s1s2MS 

and 

LMLSMS → JLSMJ. 

I advise against using ladders plus orthogonality to solve this problem because MJ 

= 0 is the worst possible situation for this method. 

B. The atom in question has a nonzero nuclear spin, I = 5/2.  This means that you 
will eventually have to perform an additional uncoupled to coupled 
transformation: 

!
J 

!
I 

! 
F = + 

JM J IM I → FJIM F . 

The nuclear spin gives rise to “Fermi-contact” and magnetic dipole hyperfine 
structure.  The hyperfine Hamiltonian is 

Hhf = ∑ (ai si • I +bi ℓ i • I) . 

The ∆F = ∆J = ∆L = ∆S = ∆I = 0 special form for the Wigner-Eckart theorem for 
vector operators may be used to replace the above “microscopic” form of Hhf by a 
more convenient, but restricted, form 

Hhf = cJLSJ•I 
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because the microscopic Hhf contains ∑ aisi and ∑ bi ℓ i , both of which are 
i i 

vectors with respect to J. 

Hef = ∑ (ai si +bi ℓ i ) • I 

= cJLS J • I 

where cJLS is a reduced matrix element evaluated in the JLSMJ basis set 

JLS JLS ∑ (ai si +bi ℓ i ) cJLS = 
i 

where 

JLSM J ∑ (ai si +bi ℓ i ) cJLS = 
i 

JLSM J ′ JLSM J | J | JLSM J ′ . = cJLS 

cJLS is a constant that depends on each of the magnitude quantum numbers J, L, 
and S (but not F and I).  I will review this derivation and show you how to 
evaluate the J, L, S dependence of cJLS in a handout. 

Similarly, the spin-orbit Hamiltonian 

HSO = ∑ ζ( )ri ℓ i •si 
! 

may be replaced by the ∆L = 0, ∆S = 0 restricted form, 

HSO = ζLSL • S. 

The purpose of this problem is to show that all of the fine (spin-orbit) and 
hyperfine structure for all of the states of the 3d4p configuration can be related to 
the fundamental one-electron coupling constants:  a3d, a4p, b3d, b4p, ζ3d, and ζ4p. 

Derive simple formulas for the hyperfine and fine structure for all ⎟ FJLSIMF〉 
states of the 3d4p configuration (consistent with neglect of ∆L ≠ 0, ∆S ≠ 0 matrix 
elements). 

C. The six L–S states that arise from the 3d4p electronic configuration split into 12 
fine-structure J-components and, in turn, into 54 hyperfine F-components.  The 
eigenenergies are given (neglecting off-diagonal matrix elements between widely 
separated J-L-S fine structure components) by cJLSJ•I and, alternatively, by matrix 
elements of the microscopic forms of the Hhf (and HSO) operators evaluated in the 
explicit product-of-spin-orbitals basis set.  The set of 12 {cJLS} can be related to 
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four of the six fundamental coupling constants listed at the end of part B.  There 
are several tricks for expressing many-electron reduced matrix elements in terms 
of one-electron reduced matrix elements.  One trick is to start with “extreme 
states”.  Another is to exploit a matrix element sum rule based on the trace 
invariance of matrix representations of H.  For HSO use 3F4 MJ = 4 to get ζ3F, 

3P0 

MJ = 0 (your answer to part A) to get ζ3P, and (if you are brave: optional) the sum 
rule for J = 3, MJ = 3 to get ζ3D.  For Hhf consider only 3F4 MF = (4+5/2) and (if 
you are brave: optional) 1F3 MF = (3 + 5/2). 
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