5.73

Quiz 18 ANSWERS

1.

$$
\mathbf{H}=\left(\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right), \quad \text { and overlap: } \quad \mathbf{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

A. Use the variational method (which in this case is identical to quasidegenerate perturbation theory) to find an upper bound on the energy of the lowest energy state.

$$
\begin{gathered}
0=\left|\begin{array}{cc}
2-E & 4 \\
4 & 8-E
\end{array}\right| \\
16-10 E+E^{2}-16=0 \\
E=0,+10 \\
E_{\text {lowest }} \leq 0
\end{gathered}
$$

B. Show that $\binom{5^{-1 / 2}}{2 \bullet 5^{-1 / 2}}$ is an eigenfunction of \mathbf{H}. What is the eigenvalue of \mathbf{H} to which this eigenfunction belongs?

$$
\left(\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right) 5^{-1 / 2}\binom{1}{2}=5^{-1 / 2}\binom{2+8}{4+16}=(10) 5^{-1 / 2}\binom{1}{2}
$$

The eigenvector belongs to $E=10$.
C. What would you get for the energy levels and eigenfunctions using ordinary nondegenerate perturbation theory?

$$
\begin{aligned}
& E_{\text {lower }}=2-\frac{16}{6}=-\frac{2}{3} \\
& E_{\text {upper }}=8+\frac{16}{6}=10 \frac{2}{3}
\end{aligned}
$$

D. Use the same \mathbf{H} but let the overlap matrix be $\mathbf{S}=\left(\begin{array}{cc}0.9 & 0.1 \\ 0.1 & 0.9\end{array}\right)$.

This corresponds to a basis set that is neither normalized nor othogonal. \mathbf{S} is diagonalized by
$\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}0.9 & 0.1 \\ 0.1 & 0.9\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ 0 & 1.6\end{array}\right)=\tilde{\mathbf{S}}$.
Find $\tilde{\mathbf{S}}^{-1 / 2}$ and derive $\tilde{\mathbf{H}}$ via $\tilde{\mathbf{H}}=\tilde{\mathbf{S}}^{-1 / 2}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) \mathbf{H}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right) \tilde{\mathbf{S}}^{-1 / 2}$ where
$\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) \mathbf{H}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}18 & 6 \\ 6 & 2\end{array}\right)$.
$\tilde{S}^{-1 / 2}=\left(\begin{array}{cc}2^{-1 / 2} & 0 \\ 0 & 1.6^{-1 / 2}\end{array}\right)$
$\tilde{H}=\tilde{S}^{-1 / 2}\left(\begin{array}{cc}18 & 6 \\ 6 & 2\end{array}\right) \tilde{S}^{-1 / 2}=\tilde{S}^{-1 / 2}\left(\begin{array}{cc}18 \cdot 2^{-1 / 2} & 6 \cdot 1.6^{-1 / 2} \\ 6 \cdot 2^{-1 / 2} & 2 \cdot 1.6^{-1 / 2}\end{array}\right)$
$=\left(\begin{array}{cc}\frac{18}{2} & 6 \cdot(3.2)^{-1 / 2} \\ \operatorname{sym} & \frac{2}{1.6}\end{array}\right)=\left(\begin{array}{cc}9 & 3.354 \\ \operatorname{sym} & 1.25\end{array}\right)$
E. The trace of a Hermitian matrix is the sum of the eigenvalues.

What is the sum of the eigenvalues of $\tilde{\tilde{\mathbf{H}}}$?
$9+1.25=10.25$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

