Perturbation Theory I

(See CTDL 1095-1107, 1110-1119)

Last time: derivation of all matrix elements for Harmonic-Oscillator: $\mathbf{x , p , \mathbf { H }}$
"selection rules"

$$
\begin{aligned}
& x_{i j}^{n} \quad|i-j| \leq n \text { in steps of } 2 \quad\left(\text { e.g. } \mathrm{x}^{3}: \Delta n= \pm 3, \pm 1\right) \\
& x_{i i}^{n} \propto i^{n / 2}
\end{aligned}
$$

"quantum number scaling"
dimensionless quantities

$$
\begin{aligned}
& \underset{\sim}{\mathbf{x}}=\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \mathbf{x} \\
& \underset{\sim}{\mathbf{p}}=(\hbar m \omega)^{-1 / 2} \mathbf{p} \\
& \underset{\sim}{\mathbf{H}}=\frac{1}{\hbar \omega} \mathbf{H} \\
& \underset{\sim}{\mathbf{x}}=2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \\
& \underset{\sim}{\mathbf{p}}=2^{-1 / 2} i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)
\end{aligned}
$$

"annihilation"	$\mathbf{a}=2^{-1.2}(\underset{\sim}{\mathbf{x}}+i \mathbf{p})$	$\mathbf{a}\|n\rangle=n^{1 / 2}\|n-1\rangle$
"creation"	$\mathbf{a}^{\dagger}=2^{-1 / 2}(\mathbf{x}-i \mathbf{p})$	$\mathbf{a}^{\dagger}\|n\rangle=(n+1)^{1 / 2}\|n+1\rangle$
"number"	$\mathbf{a}^{\dagger} \mathbf{a}\left(\operatorname{not} \mathbf{a a}{ }^{\dagger}\right)$	$\mathbf{a}^{\dagger} \mathbf{a}\|n\rangle=n\|n\rangle$
"commutator"	$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=+\mathbf{1}$	

5.73 Lecture \#14

column
a little more:

$$
a_{01}=1^{1 / 2}
$$

(one step to right
convenience of having only one and not two diagonals filled

$$
\left.\mathbf{a}=\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & \\
0 & \sqrt{1} & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & 0 \\
0 & 0 & 0 & 0 & \ddots \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \begin{array}{ll}
0 & \\
1 & \\
2 & \text { row } \\
3 & \\
\end{array}
$$ of main diagonal)

$$
\mathbf{a}^{n}=\left(\begin{array}{ccccc}
0 & \cdots & (n!)^{1 / 2} & 0 & 0 \\
0 & 0 & \cdots & \left(\frac{(n+1)!}{1!}\right)^{1 / 2} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \left(\frac{(n+q)!}{q!}\right)^{1 / 2}
\end{array}\right) \begin{gathered}
0 \\
1
\end{gathered}{ }^{\substack{\text { (n steps } \\
\text { to right) }}} \begin{aligned}
& q
\end{aligned}
$$

Selection rules are obtained simply by counting the numbers of \mathbf{a}^{\dagger} and \mathbf{a} operators and taking the difference.

The actual value of the matrix element depends on the order in which the individual \mathbf{a}^{\dagger} and \mathbf{a} factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using $\mathbf{a}, \mathbf{a}^{\dagger}$, and $\mathbf{a}^{\dagger} \mathbf{a}$
This makes writing computer programs trivially easy and transparent.

$$
\begin{aligned}
& \text { selection rule for } \mathrm{a}_{i j}^{n} \quad j-i=n \\
& \text { selection rule for } \mathrm{a}_{i j}^{\dagger n} \quad j-i=-n \\
& \text { operate on right with } \mathbf{a}^{n} \text { first } \\
& |n\rangle=[n!]^{-1 / 2}\left(\mathbf{a}^{\dagger}\right)^{n}|0\rangle \quad \downarrow \quad \downarrow \text { operate on left with }\left(\mathbf{a}^{\dagger}\right)^{\mathrm{m}} \text { second } \\
& {\left[\left(\mathbf{a}^{\dagger}\right)^{m}(\mathbf{a})^{n}\right]_{j k}=\underbrace{\delta_{j, k-n+m}}_{\text {selection rule }}\left[\frac{(k!)}{(k-n)!} \frac{(j!)}{(j-m)!}\right]^{1 / 2}}
\end{aligned}
$$

5.73 Lecture \#14

One of the places where these tricks come in handy is perturbation theory.

We already have:

1. WKB: local solution, local $\mathrm{k}(\mathrm{x})$, locate and exploit stationary phase (Lecture \#3)
2. Numerov-Cooley: exact solution - no restrictions (Lecture \#9)
3. Discrete Variable Representation: exact solution,

Why perturbation theory? ψ as linear combination of $\mathrm{H}-\mathrm{O}$ eigenstates (Lecture \#11)

- replace exact \mathbf{H}, which is usually of ∞ dimension, by $\mathbf{H}^{\text {eff }}$, which is of finite dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can be computed with error < some preset tolerance.
"Fit model" that is physical (because it makes localization and coupling mechanisms explicit) yet parametrically parsimonious
- derive explicit functional relationship between an n-dependent observable (e.g. E_{n}) and n
e.g.

$$
\frac{E_{n}}{h c}=\omega_{e}(n+1 / 2)-\omega_{e} x_{e}(n+1 / 2)^{2}+\omega_{e} y_{e}(n+1 / 2)^{3}
$$

- establish relationship between a molecular constant $\left(\omega_{e}, \omega_{e} \mathrm{x}_{\mathrm{e}}, \ldots\right)$ and the parameters that define $V(x)$ e.g. $\omega_{e} x_{0} \leftrightarrow a x^{3}$
There are 2 kinds of garden variety perturbation theory:

1. Nondegenerate (Rayleigh-Schrödinger) P.T. \rightarrow simple formulas.

This breaks down when the interacting basis states are "near degenerate."
2. Quasi-Degenerate P.T. \rightarrow matrix $\mathbf{H}^{\text {eff }}$

Finite $\mathbf{H}^{\text {efff }}$ is corrected for "out-of-block" perturbers by "van Vleck" or "contact" transformation
~ 4 Lectures

Derive Perturbation Theory Formulas * correct E_{n} and ψ_{n} directly for effects of "neglected" terms in exact \mathbf{H}
 * correct all other observables indirectly through corrected ψ

5.73 Lecture \#14

Perturbation Theory I. Begin Cubic Anharmonic Perturbation

Formal treatment

$$
\begin{array}{ll}
E_{n}=\lambda^{0} E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda E_{n}^{(2)} & \text { usually stops at } \lambda^{2} \\
\Psi_{n}=\lambda^{0} \psi_{n}^{(0)}+\lambda^{1} \psi_{n}^{(1)} & \begin{array}{r}
\text { usually stops at } \lambda^{1}(\text { because all observables } \\
\text { involve } \left.\psi \times \psi^{\prime}, \text { hence orders go up to } \lambda^{2}\right) . \\
\mathbf{H}=\lambda^{0} \mathbf{H}^{(0)}+\lambda^{1} \mathbf{H}^{(1)}
\end{array}
\end{array}
$$

λ is an order-sorting parameter with no physical significance. Set $\lambda=1$ after all is done. $\lambda=0 \rightarrow 1$ is like turning on the effect of $\mathbf{H}^{(1)}$. Equations must be valid for the entire range of $\lambda . \quad 0 \leq \lambda \leq 1$.

Plug 3 equations into Schrödinger Equation, $H \psi_{n}=E_{n} \psi_{n}$, and collect terms into separate equations according to the order of λ.
λ^{0} terms:

$$
\mathbf{H}^{(0)}\left|\boldsymbol{\psi}_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left|\psi_{n}^{(0)}\right\rangle
$$

left multiply by $\left\langle\psi_{m}^{(0)}\right|$

$$
H_{m n}^{(0)}=E_{n}^{(0)} \delta_{m n}
$$

CALLED BASIS FUNCTIONS

5.73 Lecture \#14

So we choose $\mathbf{H}^{(0)}$ to be the part of \mathbf{H} for which:

* it is easy to write and exploit a complete set of eigenfunctions and eigenvalues
* it is easy to evaluate matrix elements of commonly occurring "perturbation" terms in this basis set
* sometimes the choice of basis set is based on convenience rather than "goodness" - doesn't matter as long as the basis set is complete.
easier to think "nature" intended a simpler reality

$$
\begin{array}{lll}
\text { examples: } & \text { Harmonic Oscillator } & V(x)=\frac{1}{2} k x^{2} \\
& \text { Morse Oscillator } & V(x)=D\left[1-\mathrm{e}^{-a x}\right]^{2} \quad\left[\mathrm{D}, \mathrm{a}, \text { and } \mathrm{R}_{e}\right] \\
& \text { Quartic Oscillator } & V(x)=b x^{4} \\
& \mathrm{n} \text {-fold hindered rotor } & V_{n}(\phi)=\left(V_{n}^{0} / 2\right)(1-\cos n \phi)
\end{array}
$$

Now return to the Schrödinger Equation and examine the λ^{1} and λ^{2} terms.
$\underline{\lambda^{1} \text { terms }}$

$$
\mathbf{H}^{(1)}\left|\psi_{n}^{(0)}\right\rangle+\mathbf{H}^{(0)}\left|\psi_{n}^{(1)}\right\rangle=E_{n}^{(1)}\left|\psi_{n}^{(0)}\right\rangle+E_{n}^{(0)}\left|\psi_{n}^{(1)}\right\rangle
$$

multiply by $\left\langle\psi_{n}^{(0)}\right|$

$$
\begin{aligned}
& \text { from } \mathbf{H}^{(0)} \text { operating to left } \\
& \underbrace{H_{n n}^{(1)}+E_{n}^{(0)}\left\langle\psi_{n}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=E_{n}^{(1)}+E_{n}^{(0)}\left\langle\psi_{n}^{(0)} \mid \psi_{n}^{(1)}\right\rangle}_{\text {get rid of them }} \\
& \qquad \text { same }
\end{aligned}
$$

(could also require $\left\langle\psi_{n}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=0$)
we do require this later

5.73 Lecture \#14

$$
H_{n n}^{(1)}=E_{n}^{(1)} \quad \begin{aligned}
& \text { 1st-order correction to } E \text { is just the expectation } \\
& \text { value of the perturbation term in } \mathbf{H}: \mathbf{H}^{(1)} .
\end{aligned}
$$

Return to λ^{1} equation and this time multiply by $\left\langle\psi_{m}^{(0)}\right|$

$$
\begin{aligned}
& H_{m n}^{(1)}+E_{m}^{(0)}\left\langle\psi_{m}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=0+E_{n}^{(0)}\left\langle\psi_{m}^{(0)} \mid \psi_{n}^{(1)}\right\rangle \\
& H_{m n}^{(1)}=\left\langle\psi_{m}^{(0)} \mid \psi_{n}^{(1)}\right\rangle\left(E_{n}^{(0)}-E_{m}^{(0)}\right) \\
& \left\langle\psi_{m}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=\frac{H_{m n}^{(1)}}{E_{n}^{(0)}-E_{m}^{(0)}}
\end{aligned}
$$

Now, to get $\left|\psi_{\mathrm{n}}^{(1)}\right\rangle$, we use the completeness of $\left\{\psi^{(0)}\right\}: \sum_{k}\left|\psi_{k}^{(0)}\right\rangle\left\langle\psi_{k}^{(0)}\right|$

$$
\psi_{n}^{(1)}=\sum_{k}\left|\psi_{k}^{(0)}\right\rangle \underbrace{\left\langle\psi_{k}^{(0)} \mid \Psi_{n}^{(1)}\right\rangle}_{\text {but we already know this }}
$$

* index of $\Psi_{n}^{(1)}$ matches $1^{\text {st }}$ index of $E_{n}^{(0)}$ in denominator

$$
\psi_{n}^{(1)}=\sum_{k}\left|\psi_{k}^{(0)}\right\rangle \frac{H_{k n}^{(1)} \stackrel{\leftarrow}{E_{n}^{(0)}-E_{k}^{(0)}}}{\underline{E_{n}}}
$$

* $n=k$ is problematic. Insist on Σ_{k}^{\prime} which means exclude the $k=n$ term
* we cold have demanded $\left\langle\psi_{n}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=0$
* counter - intuitive order of indices $\mathrm{H}_{k n}^{(1)}$
indices in opposite order
from naïve expectation

5.73 Lecture \#14

λ^{2} terms

most important in real problems although mindlessly excluded from most textbooks.

$$
\mathbf{H}^{(1)}\left|\psi_{n}^{(1)}\right\rangle=E_{n}^{(1)}\left|\psi_{n}^{(1)}\right\rangle+E_{n}^{(2)}\left|\psi_{n}^{(0)}\right\rangle
$$

$$
\sum_{k}\left\langle\psi_{n}^{(0)}\right| \mathbf{H}^{(1)}\left|\psi_{k}^{(0)}\right\rangle\left\langle\psi_{k}^{(0)} \mid \psi_{n}^{(1)}\right\rangle=E_{n}^{(2)}
$$

"matrix element squared" over energy difference in "energy denominator"

We have derived all needed formulas $E_{n}^{(0)}, E_{n}^{(1)}, E_{n}^{(2)} ; \psi_{n}^{(0)}, \psi_{n}^{(1)}!$

Examples

$$
\begin{aligned}
& V(x)=\frac{1}{2} k x^{2}+a x^{3} \quad(\mathrm{a}<0) \\
& \mathbf{H}^{(0)}=\frac{1}{2} k \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 m} \\
& \mathbf{H}^{(1)}=a \mathbf{x}^{3}
\end{aligned}
$$

(actually the ax^{3} term with $\mathrm{a}<0$ makes all potentials unbound. How can we pretend that this catastrophe does not affect the results from perturbation theory?)

5.73 Lecture \#14

We need matrix elements of \mathbf{x}^{3}
Two ways to get them:

* matrix multiplication $\quad x_{i \ell}^{3}=\sum_{j, k} x_{i j} x_{j k} x_{k \ell}$
* $\mathbf{a}, \mathbf{a}^{\dagger}$ tricks

$$
\begin{aligned}
\mathbf{x}^{3} & =\left(\frac{\hbar}{m \omega}\right)^{3 / 2} \underset{\sim}{\mathbf{x}^{3}}=\left(\frac{\hbar}{m \omega}\right)^{3 / 2}\left[2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)\right]^{3} \\
& =\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left[\mathbf{a}^{3}+\left(\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}\right)+\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right)+\mathbf{a}^{\dagger 3}\right]
\end{aligned}
$$

Each group in () has its own Δv selection rule (see lecture \#13 notes). Simplify using $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1$.

Goal is to manipulate each mixed $\mathbf{a}, \mathbf{a}^{\dagger}$ term so that "the number operator", $\mathbf{a}^{\dagger} \mathbf{a}$, appears at the far right and then exploit $\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=n|n\rangle$

All of the nonzero elements:

$$
\begin{aligned}
& \Delta n= \pm 3 \\
& \mathbf{a}_{n-3 n}^{3}=[n(n-1)(n-2)]^{1 / 2} \\
& \mathbf{a}_{n+3 n}^{\dagger 3}=[(n+3)(n+2)(n+1)]^{1 / 2}
\end{aligned}
$$

square root
of larger q.n.
$\Delta n=-1:$

$$
\begin{aligned}
\left(\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right) & =3 \mathbf{a a}^{\dagger} \mathbf{a} \quad \stackrel{-1}{ } \\
\text { because } \mathbf{a}^{\dagger} \mathbf{a a} & =\mathbf{a a}^{\dagger} \mathbf{a}+\left[\mathbf{a}^{\dagger}, \mathbf{a}\right] \mathbf{a}=\mathbf{a a}^{\dagger} \mathbf{a}-\mathbf{a} \\
\mathbf{a a a ^ { \dagger }} & =\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a}[\underbrace{\mathbf{a}, \mathbf{a}^{\dagger}}]=\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \\
\left(\mathbf{a a}^{\dagger} \mathbf{a}\right)_{n-1 n} & =n^{3 / 2}
\end{aligned}
$$

5.73 Lecture \#14

$$
\begin{aligned}
& \Delta n=+1: \quad\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right)=3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger} \\
& {\left[\begin{array}{l}
\left.3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger}\right]_{n+1 n} \\
\left.{\underset{n}{n}}^{2}+1\right)^{1 / 2}
\end{array}\right.} 3 n(n+1)^{1 / 2}+3(n+1)^{1 / 2}=3(n+1)^{3 / 2} \\
& \text { (This is neither typo } \\
& \text { nor approximation.) }
\end{aligned}
$$

So we have worked out all \mathbf{x}^{3} matrix elements - leave the rest to P.S. \#5.

Properties other than E_{n} ? Use $\psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{(0)}+\psi_{\mathrm{n}}^{(1)}$
e.g. transition probability (electric dipole allowed vibrational transitions)

$$
P_{n n^{\prime}} \propto\left|x_{n n^{\prime}}\right|^{2}
$$

for $\mathrm{H}-\mathrm{O}$

$$
\left|x_{n n^{\prime}}\right|^{2}=\left(\frac{\hbar}{\frac{2(\mathrm{k} n)^{1+2}}{m \varsigma}}\right) n_{>} \delta_{n_{>}, n_{<}+1} \quad\left(n_{>} \text {here means the larger of } n_{>} \text {and } n_{<}\right)
$$

(selection rule: only $\Delta n= \pm 1$ transitions).
For a perturbed $H-O$, e.g. $\mathbf{H}^{(1)}=\mathrm{ax}^{3}$

$$
\begin{aligned}
& \left|\psi_{n}\right\rangle=\left|\psi_{n}^{(0)}\right\rangle+\sum_{k}^{\prime} \frac{H_{k n}^{(1)}}{E_{n}^{(0)}-E_{k}^{(0)}}\left|\psi_{k}^{(0)}\right\rangle \\
& \left|\psi_{n}\right\rangle=\left|\psi_{n}^{(0)}\right\rangle+\frac{H_{n n+3}^{(1)}}{-3 \hbar \omega}\left|\psi_{n+3}^{(0)}\right\rangle+\frac{H_{n n+1}^{(1)}}{-\hbar \omega}\left|\psi_{n+1}^{(0)}\right\rangle+\frac{H_{n n-1}^{(1)}}{+\hbar \omega}\left|\psi_{n-1}^{(0)}\right\rangle+\frac{H_{n n-3}^{(1)}}{+3 \hbar \omega}\left|\psi_{n-3}^{(0)}\right\rangle
\end{aligned}
$$

Note the pairwise simplicity in the denominators.
The $\mathbf{H}_{n n^{\prime}}^{(1)}$ terms are matrix elements of \mathbf{x}^{3}.

5.73 Lecture \#14

Allowed

$1^{\text {st }}$ index	$2^{\text {nd }}$ indices
(initial state)	(final state)

$$
\left(\begin{array}{c}
n+3 \\
n+1 \\
n \\
n-1 \\
n-3
\end{array}\right) \mathbf{x}\left(\begin{array}{c}
n+4, n+2 \\
n+2, n \\
n+1, n-1 \\
n, n-2 \\
n-2, n-4
\end{array}\right)
$$

$1^{\text {st }}$ index reflects anharmonic mixing of initial state due to ax^{3} term
$2^{\text {nd }}$ indices refer to final state reached via electric dipole allowed transition, controlled by matrix elements of \mathbf{x}.

Cubic anharmonicity of $\mathrm{V}(\mathrm{x})$ can give rise to $\Delta n= \pm 7, \pm 5, \pm 4, \pm 3, \pm 2, \pm 1,0$ transitions.

$$
\begin{aligned}
\langle n| \mathbf{x}|n+7\rangle & =\left(\frac{\hbar}{2 \omega m}\right)^{7 / 2} \frac{a^{2}}{(-3 \hbar \omega)^{2}}[\frac{(n+7)!}{\underbrace{n!}}]^{1 / 2} \\
\left|x_{n n+7}\right|^{2 / 2} & \approx \frac{a^{4}}{m^{7} \omega^{11}} n^{7}
\end{aligned}
$$

Other less extreme Δn transition strengths are given by smaller powers of $\frac{1}{\omega}$ and n.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

