Eigenvalues, Eigenvectors, and the Discrete Variable Representation (DVR)
should have read CDTL pages 94-144 Last time:
a "bra" $\quad{ }_{\phi}\langle |=\left(\begin{array}{lll}a_{1}^{*} & \ldots & a_{N}^{*}\end{array}\right)_{\phi}$
a"ket" $\left\rangle_{\phi}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{N}\end{array}\right)_{\phi}\right.$
$\rangle\langle | \quad$ an $N \times N$ matrix

$$
\begin{aligned}
& \psi \text { in }\{\phi\} \text { basis set } \\
& \left\lvert\, \begin{array}{l}
\left|\psi_{\mathrm{i}}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{N}
\end{array}\right)_{\phi} \\
a_{j}={ }_{\phi}\left\langle\phi_{j} \mid \psi_{i}\right\rangle_{\phi}
\end{array}\right.
\end{aligned}
$$

$\mathbb{\sharp}=\left(\begin{array}{cccc}1 & & & \\ & 1 & & 0 \\ & & 1 & \\ & & & \\ & 0 & & \end{array}\right)=\sum_{k}|k\rangle\langle k| \quad$ The "unit" matrix
at end of lecture \#10 we saw

$$
\begin{aligned}
\left\langle\phi_{i}\right| \mathbf{A B}\left|\phi_{j}\right\rangle & =\sum_{k}\left\langle\phi_{i}\right| \mathbf{A}|\underbrace{\left.\phi_{k}\right\rangle\left\langle\phi_{k}\right|}_{\mathbf{1}} \mathbf{B}| \phi_{j}\rangle \\
& =\sum_{k} A_{i k} B_{k j}=(\mathbf{A} \mathbf{B})_{i j}
\end{aligned}
$$

What is the connection between the Schrödinger (wavefunction) and Heisenberg (matrix) representations?

$$
\begin{aligned}
& \psi_{i}(x)=\left\langle x \mid \psi_{i}\right\rangle \\
& \left|x_{0}\right\rangle=\delta\left(x, x_{0}\right) \text { eigenfunction of } \mathrm{x} \text { with eigenvalue } \mathrm{x}_{0}
\end{aligned}
$$

Using this formulation for $\psi_{(}(x)$, you can go freely (and rigorously) between the Schrödinger and Heisenberg representations.
Today: eigenvalues of a matrix - what are they? how do we get them? (secular equation). Why do we need them?
eigenvectors - how do we get them?
Arbitrary V(x) in Harmonic Oscillator Basis Set (Discrete Variable Representation)

The Schrödinger Equation is an eigenvalue equation

$$
\begin{aligned}
& \hat{A} \psi=\stackrel{\downarrow}{a} \text { an eigenvalue } \\
& \mathbf{A}\left|\psi_{i}\right\rangle=a_{i}\left|\psi_{i}\right\rangle
\end{aligned}
$$

In matrix language:

$$
A^{\phi}=\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & a_{N}
\end{array}\right)_{\psi}
$$

$$
|1\rangle_{\psi}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad|2\rangle_{\psi}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The ψ representation is special. We want to derive it from a computationally explicit starting point. We compute A^{ϕ} for a complete ortho-normal basis set $\{\phi\}$.

$$
A^{\phi}=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 N} \\
\vdots & A_{22} & & \vdots \\
\vdots & \cdots & \ddots & \vdots \\
A_{N 1} & \cdots & \cdots & A_{N N}
\end{array}\right)_{\phi} \quad \begin{aligned}
& \text { a non-diagonal } \\
& \text { matrix }
\end{aligned}
$$

The basis set that we choose can be the eigenfunctions for a simplified problem or they can be computationally convenient functions.

How do we find the eigenvalues and eigenfunctions of a non-diagonal \mathbf{A}^{ϕ} ?

I am using unconventional notation, ϕ or ψ subscripts or superscripts, which make the meaning of all symbols explicit. (They are like training wheels on a bicycle, discarded as soon as you learn to ride.

Some notation

$$
\begin{aligned}
|i\rangle_{\phi} & =\left(\begin{array}{l}
0 \\
\vdots \\
1 \\
\vdots \\
j
\end{array}\right)_{\phi} \\
\mathbf{T}|i\rangle_{\phi} & =\left(\begin{array}{l}
T_{1 i} \\
\vdots \\
T_{N i}
\end{array}\right)_{\phi} \text { the position }
\end{aligned}
$$

Suppose we have a diagonal matrix, \mathbf{A}^{ψ}, an eigenvector of \mathbf{A}^{ψ} is given by

$$
\mathbf{A}^{\psi}|i\rangle_{\psi}=\mathbf{A}^{\psi}\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
a_{i} \\
\vdots \\
0
\end{array}\right)=a_{i}\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i}
$$

The following Non-Lecture section is a derivation and discussion of the most important and useful equation in matrix mechanics.

$$
\mathbf{S}^{\dagger} \mathbf{A}^{\phi} \mathbf{S}\left(\mathbf{S}^{\phi}| \rangle_{\phi}\right)=\mathbf{A}^{\psi}| \rangle_{\psi}
$$

The eigenvectors are given by

$$
\left(\mathbf{S}^{\dagger}| \rangle_{\phi}\right)
$$

The i-th eigenvector is the i-th column or \mathbf{S}^{\dagger}

Sometimes, as for a time-dependent wavepacket, you want to know how a non-eigenvector is expressed as a linear combination of eigenkets. These are given by the columns of \mathbf{S}.

$$
\left.\mathbf{S}\left\rangle_{\psi}=\right|\right\rangle_{\phi}
$$

Another very useful trick will be to evaluate the elements of S or \mathbf{S}^{\dagger} using perturbation theory rather than diagonalization of the full matrix by a computer.

For the exact \mathbf{H}, we use perturbation theory, discussed in Lectures \#14-17.

$$
\begin{gathered}
\mathbf{H}=\underset{\substack{4 \\
\text { exactly } \\
\text { solved } \\
(\text { diagonal) }}}{\mathbf{H}^{(0)}}+\underset{\substack{\text { bad stuff } \\
\text { (not diagonal) }}}{\mathbf{H}^{(1)}} \\
\left(\mathbf{S}^{\dagger} \mathbf{H S}\right)_{i i}=\mathbf{H}_{i}^{(0)}+\sum_{j \neq i} \frac{\left|\mathbf{H}_{i j}^{(1)}\right|^{2}}{E_{i}^{(0)}-E_{j}^{(0)}} \\
\mathbf{S}_{i j}^{\dagger}=\frac{\mathbf{H}_{j i}^{(1)}}{E_{j}^{(0)}-E_{i}^{(0)}} \quad|i\rangle_{(0)} \text { mixed into }|j\rangle
\end{gathered}
$$

where $E_{j}^{(0)}$ and $E_{i}^{(0)}$ are two eigen-energies of $\mathbf{H}^{(0)}$

5.73 Lecture \#11

The equation

$$
\mathbf{S}^{\dagger} \mathbf{A}^{\phi} \mathbf{S S}^{\dagger}| \rangle_{\phi}=\mathbf{A}^{\psi}| \rangle_{\psi}
$$

is the most important equation in matrix mechanics
\rangle_{ϕ} a complete, ortho-normal set of basis-kets
\rangle_{ψ} the complete set of eigen-kets of Hermitian operator A
\mathbf{A}^{ϕ} is the $N \times N$ (N can, in principle, be ∞) matrix representation of \mathbf{A} where the elements of A are

$$
A_{i j}^{\phi}={ }_{\phi}\langle i| \mathbf{A}|j\rangle_{\phi}=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 N} \\
A_{21} & A_{22} & \cdots & A_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
A_{N 1} & \cdots & \cdots & A_{N N}
\end{array}\right)_{\phi}
$$

$\mathbf{A}^{\boldsymbol{\psi}}$ is the diagonal matrix representation of \mathbf{A} in the eigen-basis.

$$
A^{\psi}=\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & a_{N}
\end{array}\right)_{\psi}
$$

A is Hermitian, which means that $\mathbf{A}^{\dagger}=\mathbf{A}$ where $A_{i j}^{\dagger}=A_{j i}^{*}$ and all the $\left\{a_{i}\right\}$ are real.

S is a unitary matrix
$\mathbf{S}^{\dagger}=\mathbf{S}^{-1} \quad$ is the definition of a unitary matrix
$\mathbf{S}^{\dagger} \mathbf{S}=\mathbb{1}$ unit matrix
$\mathbf{S}^{\dagger} \mathbf{A S} \quad$ is a unitary transformation of \mathbf{A}

We are interested in the unitary transformation that "diagonalizes" A

$$
\mathbf{S}^{\dagger} \mathbf{A}^{\phi} \mathbf{S}=\mathbf{A}^{\psi}
$$

and gives us the eigen-kets of \mathbf{A},

$$
\mathbf{S}^{\dagger}| \rangle_{\phi}=| \rangle_{\psi}
$$

This means that the j-th column of \mathbf{S}^{\dagger} is the j -th eigenvector of \mathbf{A}.

$$
\sum_{i} \mathbf{S}_{i j}^{\dagger}|i\rangle_{\phi}=\left(\begin{array}{c}
S_{1 j}^{\dagger} \\
\vdots \\
S_{N j}^{\dagger}
\end{array}\right)_{\phi}^{\dagger}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}=|j\rangle_{\psi} \quad \mathrm{j} \text {-th }
$$

If $\left\rangle_{\phi}\right.$ is orthonormal, the unitary transformation preserves the orthonormality of $\left\rangle_{\psi}\right.$.
Efficient computer programs exist that diagonalize any Hermitian matrix. The diagonalization is done in sequence of 2×2 transformations $\left\{S_{i}^{\dagger}\right\}$, and the final diagonalizing matrices, $\mathbf{S}, \mathbf{S}^{\dagger}$, are expressed as a product of partial diagonalization steps

$$
\mathbf{S}^{\dagger}=\prod_{i=1}^{N_{\max }} S_{i}^{\dagger}
$$

which means that the computer gives us both the eigenvalues and the eigenvectors of \mathbf{A}.

Now where does this come from? Linear Algebra.

This is discussed in elegant detail in Merzbacher, Chapters 10.1 - 10.2, pages 207-212.

Eigenvalue Equation

$$
\psi_{j}=\sum_{i} c_{i}^{j} \phi_{i}
$$

completeness, an eigenstate is
obtained from a linear combination of basis functions.
$\mathbf{A} \sum_{i} c_{i}^{j} \phi_{i}=a_{j} \sum c_{i}^{j} \phi_{i}$
left multiply by ϕ_{k}^{*} and integrate

$$
\begin{aligned}
& \int \phi_{k}^{*} \mathbf{A} \phi_{i} d \tau=A_{k i}^{\phi} \\
& \sum_{i} c_{i}^{j} A_{k i}^{\phi}-a_{j} c_{k}^{j}=0
\end{aligned}
$$

a linear homogeneous equation in unknown coefficients $\left\{c_{k}^{j}\right\}$
rearrange:

$$
\begin{aligned}
& \sum_{i}\left[c_{i}^{j} A_{k i}-a_{j} \delta_{k i} c_{i}^{j}\right]=0 \\
& \sum_{i} c_{i}^{i}\left(A_{k i}-a_{j} \delta_{k i}\right)=0
\end{aligned}
$$

left multiply by $\phi_{k^{\prime}}^{*}$, and integrate, get another homoeneous linear equation.

The determinant of the unknown coefficients of the set of $\left\{c_{i}^{j}\right\}$ must be zero to yield a non-trivial solution: non-zero values of the c_{i}^{j}.

$$
\left|\mathbf{A}^{\phi}-a \delta_{k i}\right|=0
$$

The vertical lines denote a determinant.

If we diagonalize \mathbf{A}, then we have an equation that satisfies the determinant of $|\mathbf{A}|=0$ requirement.

$$
\prod_{i=1}^{N}\left[A_{i i}^{\psi}-a\right]=0 \quad \text { for each eigenvalue in the set }\left\{a_{j}\right\}
$$

For each member of the set of eigenvalues $\left\{a_{j}\right\}$, we get one factor of the N -term product that is zero, which ensures that $\mathrm{I} \mathrm{A}^{\psi}-a \mathrm{l}=0$.

Two Useful Properties of Hermitian Matrices

Determinant Invariance

$$
\begin{aligned}
& |\mathbf{A B C}|=|\mathbf{A}||\mathbf{B}||\mathbf{C}| \\
& \text { This means }\left|\mathbf{S}^{\dagger} \mathbf{A S}\right|=\left|\mathbf{S}^{\dagger} \mathbf{S}\right||\mathbf{A}|=|\mathbf{A}| \\
& \qquad \text { so }\left|A^{\phi}\right|=\left|A^{\psi}\right|=\prod_{i=1}^{N} a_{i}
\end{aligned}
$$

Invariance of the product of eigenvalues

Trace Invariance

$$
\sum_{i=1}^{N} A_{i i}=\sum_{i=1}^{N} a_{i}
$$

Representation of the sum of eigenvalues
End of Non-Lecture

Can now solve many difficult appearing problems!
Start with a matrix representation of any operator that is expressible as a function of a matrix.
egg.
$e^{-i \mathbf{H}\left(t-t_{0}\right) / \hbar}$
propagator

$$
f(\mathbf{x})
$$

potential curve
prescription example

$$
\begin{gathered}
f(\mathbf{x})=\mathbf{T} f \underbrace{\left.\mathbf{T}^{\dagger} \mathbf{x T}\right)}_{\begin{array}{c}
\text { diagonalize } \mathbf{x}-\text { so } f() \text { is } \\
\text { applied to each diagonal }
\end{array}} \mathbf{T}^{\dagger} \\
\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}=\left(\begin{array}{cccc}
x_{1} & \text { element } & 0 \\
& x_{2} & & \\
& & \ddots & \\
0 & & & x_{N}
\end{array}\right) \\
f\left(\mathbf{T}^{\dagger} \mathbf{x T}\right)=\left(\begin{array}{ccccc}
f\left(x_{1}\right) & & & 0 \\
& f\left(x_{2}\right) & & \\
& & & \ddots & \\
0 & & & f\left(x_{N}\right)
\end{array}\right)
\end{gathered}
$$

Then perform the inverse transformation, $\mathbf{T} f\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right) \mathbf{T}^{\dagger}$ - undiagonalizes matrix, which gives matrix representation of the desired function of a matrix. Show that this actually is valid for simple example

$$
\begin{aligned}
f(x) & =\mathbf{x}^{N} \\
\underline{f^{f\left(\mathbf{x}^{N}\right)}} & =\mathbf{T}\left[\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right) \cdots\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)\right] \mathbf{T}^{\dagger} \\
& =\mathbf{T}\left[\mathbf{T}^{\dagger} \mathbf{x}^{N} \mathbf{T}\right] \mathbf{T}^{\dagger}=\mathbf{x}^{N}
\end{aligned}
$$

general proof for arbitrary $\mathrm{f}(\mathbf{x}) \rightarrow$ expand in power series. Use previous result for each integer power.

John Light: Discrete Variable Representation (DVR)
General $V(x)$ evaluated in Harmonic Oscillator Basis Set.
we did not do H-O yet, but the general formula for all of the nonzero matrix elements of \mathbf{x} in the harmonic oscillator basis set is:

$$
\langle n| \mathbf{x}|n+1\rangle=\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}(n+1)^{1 / 2} \quad \omega=(k / \mu)^{1 / 2}
$$

(infinite dimension matrix)

$$
\mathbf{x}=\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & \cdots & \cdots \\
\sqrt{1} & 0 & \sqrt{2} & \cdots & \cdots \\
0 & \sqrt{2} & 0 & \sqrt{3} & 0 \\
\vdots & \vdots & \sqrt{3} & 0 & \sqrt{4} \\
\vdots & \vdots & \vdots & \sqrt{4} & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

[CARTOON]
etc. matrix multiplication
to get matrix for $f(\mathbf{x})$ diagonalize e.g., 1000×1000 (truncated) \mathbf{x} matrix that was expressed in harmonic oscillator basis set.

$$
\begin{aligned}
& \mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}=\left(\begin{array}{cccc}
\mathrm{x}_{1} & 0 & 0 & 0 \\
0 & \mathrm{x}_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \mathrm{x}_{1000}
\end{array}\right)_{\mathrm{x}} \\
& \mathbf{V}(\mathrm{x})_{\mathrm{x}}=\left(\begin{array}{cccc}
\mathrm{V}\left(\mathrm{x}_{1}\right) & 0 & 0 & 0 \\
0 & \mathrm{~V}\left(\mathrm{x}_{2}\right) & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \mathrm{~V}\left(\mathrm{x}_{1000}\right)
\end{array}\right)_{\mathrm{x}} \begin{array}{c}
\text { diagonalized-x basis } \\
\left\{\mathrm{x}_{\mathrm{i}}\right\} \text { are eigenvalues. } \\
\text { They have no } \\
\text { obvious physical } \\
\text { significance. }
\end{array} \\
& \mathbf{V}(\mathrm{x})_{\mathrm{H}-\mathrm{O}}=\mathbf{T V}(\mathrm{x})_{\mathrm{x}} \mathbf{T}^{\dagger}=\left(\begin{array}{c}
\begin{array}{c}
\text { next transform back } \\
\text { from x-basis to } \\
\text { H-O basis set }
\end{array} \\
\text { full } \\
\text { matrix }
\end{array}\right. \\
& \mathbf{H}=\frac{\mathbf{p}^{2}}{2 \mu}+\mathrm{V}(\mathrm{x})
\end{aligned}
$$

need matrix for \mathbf{p}^{2}, get it from \mathbf{p} (the general formula for all non-zero matrix elements of \mathbf{p})

$$
\begin{aligned}
& \langle\mathrm{n}| \mathrm{p}|\mathrm{n}+1\rangle=-\mathrm{i}\left[\frac{\hbar(\omega \mu)}{2}\right]^{1 / 2}(\mathrm{n}+1)^{1 / 2} \\
& \mathbf{p}=-\mathrm{i}\left[\frac{\hbar(\omega \mu)}{2}\right]^{1 / 2}\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & 0 & 0 \\
-\sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\
0 & -\sqrt{2} & 0 & 0 & 0 \\
0 & 0 & \ddots & \ddots & \ddots \\
0 & 0 & \ddots & \ddots & \ddots
\end{array}\right) \text { same structure as } \mathbf{x} \\
& \mathbf{p}^{2}=-\left[\frac{\hbar(\omega \mu)}{2}\right]\left(\begin{array}{ccccc}
-1 & 0 & \sqrt{2} & 0 & 0 \\
0 & -3 & 0 & \ddots & 0 \\
\sqrt{2} & 0 & -5 & 0 & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots &) \\
\text { if } \quad \mathrm{H}=\frac{\mathrm{p}^{2}}{2 \mu}+\frac{1}{2} k x^{2} & \left(\frac{1}{2} k=\frac{1}{2} \omega^{2} \mu\right.
\end{array}\right) \\
& H=\frac{\hbar \omega}{4}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 14
\end{array}\right)=\hbar \omega\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & 5 / 2 & 0 \\
0 & 0 & 0 & \ddots
\end{array}\right)
\end{aligned}
$$

but for arbitrary $\mathrm{V}(\mathrm{x})$, express \mathbf{H} in HO basis set,

$$
\mathbf{H}_{H O}=\frac{\mathbf{p}_{H O}^{2}}{2 \mu}+\underbrace{\mathbf{V}(\mathbf{x})_{H O}}_{\operatorname{TV}(\mathbf{x})_{\mathbf{x}} \mathbf{T}^{\dagger}}
$$

eigenvalues obtained by $\mathbf{S}^{\dagger} \mathbf{H}_{H O} \mathbf{S}=\left(\begin{array}{ccc}E_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & E_{N}\end{array}\right)$
columns of \mathbf{S}^{\dagger} are eigenvectors in HO basis set!

1. Express matrix of \mathbf{x} in H-O basis (automatic; easy to program a computer to do this), get \mathbf{x}_{HO}.
2. Diagonalize \mathbf{x}_{HO}. Get \mathbf{x}_{x} and \mathbf{T}.
3. Trivial to write $\mathrm{V}(\mathrm{x})_{\mathrm{x}}$ as $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{V}(\mathbf{x})_{\mathrm{x}}$ in \mathbf{x} basis
4. Transform $\mathbf{V}(\mathbf{x})_{\mathrm{x}}$ back to $\mathbf{V}(\mathrm{x})_{\mathrm{HO}}$
5. Diagonalize \mathbf{H}_{HO}.

Solve many V(x) problems in this basis set.
$1000 \times 1000 \mathbf{T}$ matrix diagonalizes $\mathbf{x} \Rightarrow 1000 \mathrm{x}_{\mathrm{i}}{ }^{\prime}$ s
Save the \mathbf{T} and the $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ for future use on all $\mathrm{V}(\mathrm{x})$ problems.

To verify convergence, repeat for new \mathbf{x} matrix of dimension 1100×1100. There will be no obvious resemblance between

$$
\left\{\mathbf{x}_{i}\right\}_{1000} \text { and }\left\{\mathbf{x}_{i}\right\}_{1100}
$$

If the lowest energy eigenvalues of \mathbf{H} (i.e. the ones you care about) do not change (by measurement accuracy), converged!

Next: Matrix Solution of Harmonic Oscillator (completely without wavefunctions, starting from the $[\mathbf{x}, \mathbf{p}]$ commutation rule)

Then (at last) Perturbation Theory

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

