
  

 

    

   

 

 

  

  

    

5.73 Lecture #11 11 - 1 
Eigenvalues, Eigenvectors, and the Discrete Variable Representation (DVR) 

should have read CDTL pages 94-144 ψ in φ{ } basis set 
Last time: 

)
φ 

⎛ ⎞( a1⎛ 0 ⎞a “bra” = * * a … a
1 N ⎜ 

⎜
⎜ 
⎜ 
⎜
⎜
⎝ 

⎟
⎟ 
⎟
⎟ 
⎟
⎟
⎠ 

φ ⎜ 
⎜
⎜ 
⎜
⎜
⎝ 

⎟ 
⎟
⎟ 
⎟ 
⎟
⎠

a2! 
1

⎛ ⎞ 
⎟
⎟
⎟
⎟⎠ 

a
1 ψ i = ! 

! 
aN 

⎜ 
⎜ 
⎜
⎜⎝ 

= 

φ 
=a“ket” ! ! 

0a
N 

φ ψ 
φ 

an N × N matrix 
aj = φ j ψ i φa (complex) # φ 

⎛ 
⎜
⎜
⎜
⎜
⎜
⎜
⎜ 

⎞1 
1 0 

1 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠⎜ ⎟⎝ 

at end of lecture #10 we saw 

AB φ = ∑ φ A B φφ
i j j 

k
i !" 

φ 
#k # 

φ 
$k 

1 

= ∑ Aik 
B

kj 
= (AB)

ij 
k 

The “unit” matrixk k∑1 = = 
k 

0 " 

1
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5.73 Lecture #11 11 - 2 
What is the connection between the Schrödinger (wavefunction) and Heisenberg 
(matrix) representations? 

ψ i (x) = x ψ i 
x0 = δ (x, x0 ) eigenfunction of x with eigenvalue x0 

Using this formulation for ψi(x), you can go freely (and rigorously) between the 
Schrödinger and Heisenberg representations. 

Today: eigenvalues of a matrix – what are they? how do we get them? 
(secular equation). Why do we need them? 

eigenvectors – how do we get them? 

Arbitrary V(x) in Harmonic Oscillator Basis Set (Discrete Variable Representation) 

The Schrödinger Equation is an eigenvalue equation 
an eigenvalue

Âψ = aψ 

A = aψ
i i 

ψ
i 

⎛ ⎞In matrix language: a
1

0 0 0 

0 a 0 0 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

Aφ 2= 
0 0 ! 0 
0 0 0 a

N ψ 

⎛ ⎛⎞ ⎞1 0 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

0 
0 
! 
0 

1 
0 
! 
0 

ψ 
2 

ψ 
1 = = 

⎛ ! ⎞etc… ⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

! ⎟ ⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

1 

n'th position 

ψ 
n = 

! 
0 
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5.73 Lecture #11 11 - 3 

The ! representation is special. We want to derive it from a 
computationally explicit starting point.  We compute "! for a 
complete ortho-normal basis set {$}. 

⎛ ⎞A A ! A
11 12 1N 

" A
22 

" 

" ! # " 
A ! ! A

N1 NN 

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠ 

a non-diagonal
matrix

Aφ = 

φ 

The basis set that we choose can be the eigenfunctions for a simplified
problem or they can be computationally convenient functions. 

How do we find the eigenvalues and eigenfunctions of a non-diagonal
Aφ? 

I am using unconventional notation, φ or ψ subscripts or superscripts,
which make the meaning of all symbols explicit. (They are like training
wheels on a bicycle, discarded as soon as you learn to ride. 

⎛0⎞Some notation ⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

1 
! 

i = i'th position 
φ 

! 
j

φ 

⎛ ⎞T
1i 

T i 
φ 
= 
⎜ 
⎜ 
⎜
⎝ 

! 
T

Ni 

⎟ 
⎟ 
⎟
⎠ 

the i'th column of T 

φ 
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5.73 Lecture #11 11 - 4 
Suppose we have a diagonal matrix, A!, an eigenvector 
of A! is given by ⎛ 0 ⎛⎞ 0 ⎛⎞ 0⎞ 

Aψ = Aψi 
ψ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

! 
1 
! 
0 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

= 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

1 
a

i 

! 
0 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

= a
i 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

! 
1 
! 
0 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠

i 

The following Non-Lecture section is a derivation and 
discussion of the most important and useful equation in 
matrix mechanics. 

S† AφS Sφ = Aψ( )φ ψ 

The eigenvectors are given by 

(S† )φ 

The i-th eigenvector is the i-th column or S† 

Sometimes, as for a time-dependent wavepacket, you want to 
know how a non-eigenvector is expressed as a linear 
combination of eigenkets. These are given by the columns of S. 

S = 
ψ φ 

Another very useful trick will be to evaluate the elements of S 
or S† using perturbation theory rather than diagonalization of 
the full matrix by a computer. 
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5.73 Lecture #11 11 - 5 

For the exact H, we use perturbation theory, discussed in 
Lectures #14 – 17. 

H = H(0) + H(1) 

exactly bad stuff 
solved (not diagonal) 

(diagonal) 

2
(1) H
ij (0) +(S†HS) = H ∑

ii i E (0) − E (0) 
j≠i i j 

(1) H which is the amount of 
† ji S = i mixed into jij (0) − E (0) 

(0) E
j i 

(0) and E (0) where E are two eigen-energies of H(0) 
j i 
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5.73 Lecture #11 11 - 6 

The equation 

= AψS† AφSS† 

φ ψ 

is the most important equation in matrix mechanics 

φ a complete, ortho-normal set of basis-kets 

the complete set of eigen-kets of Hermitian operator Aψ 

A! is the " × " (" can, in principle, be ∞) matrix representation of A 
where the elements of A are 

⎛ A
11 

A
12 
! A

1N 

A
21 

A
22 
! A

2N 

" " " " 
A

N1 
! ! A

NN 

⎞ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

= 
φ 

i A j 
φ 
= 

ij 
φA 

φ 

A� is the diagonal matrix representation of A in the eigen-basis. 
⎛ ⎞a

1
0 0 0 

0 a 0 0 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

Aψ = 2 

0 0 ! 0 
0 0 0 a

N ψ 

A is Hermitian, which means that A† = A where A† = A* and all the {ai} areij ji 
real. 

S is a unitary matrix 

S† is the definition of a unitary matrix 

S†S = unit matrix 
S† AS is a unitary transformation of A 

We are interested in the unitary transformation that “diagonalizes” A 

S† AφS = Aψ 

and gives us the eigen-kets of A, 

= S−1 
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5.73 Lecture #11 11 - 7 
S† = 

φ ψ 

This means that the j-th column of S† is the j-th eigenvector of A. 

j-th⎛ ⎞0 

= j
ψ 

⎛ ⎞S† 
1 j 

! 

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

!⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟⎠ 

i 
φ 
=∑ † 1S = 

ij 
†i S ! 

0 
Nj 

φ 

ψ 

If | ⟩! is orthonormal, the unitary transformation preserves the ortho-
normality of | ⟩" . 

Efficient computer programs exist that diagonalize any Hermitian
matrix. The diagonalization is done in sequence of 2 × 2 
transformations !"!"#, and the final diagonalizing matrices, S, S†, are 
expressed as a product of partial diagonalization steps 

N 

= ∏ 
max 

SS† † 
i 

i=1 
which means that the computer gives us both the eigenvalues and the 

eigenvectors of A. 

Now where does this come from? Linear Algebra. 

This is discussed in elegant detail in Merzbacher, Chapters 10.1 – 10.2, pages 
207-212. 
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5.73 Lecture #11 11 - 8 
Eigenvalue Equation 

j completeness, an eigenstate is ψ = c φ
j ∑ i i obtained from a linear 

i combination of basis functions. 
jA c φ = a ∑c∑ i i j i

jφ
i 

i 

left multiply by φ* and integrate 
k 

φ*Aφ dτ = Aφ∫ k i ki 

a linear homogeneous equation in unknownj φ j∑c
i 
A − a

j
c = 0 coefficients { }jki k c

k
i 

rearrange: 

⎡
⎣∑ ⎤

⎦ = 0jA
i ki 

j− a δc c
ij ki 

i 

( Aki )∑ j − a δ = 0c
i j ki 

i 

left multiply by φk 
* 
′ , and integrate, get another homoeneous 

linear equation. 

The determinant of the unknown coefficients of the set of c
i
j{ } 

must be zero to yield a non-trivial solution: non-zero values of 
the ci

j . 
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5.73 Lecture #11 11 - 9 

Aφ − aδ = 0
ki 

The vertical lines denote a determinant. 

If we diagonalize A, then we have an equation that satisfies the determinant of
|A| = 0 requirement. 

N 

⎡⎣∏ Aψ − a
ii 

⎤⎦ = 0 for each eigenvalue in the set a{ }j 
i=1 

For each member of the set of eigenvalues {aj}, we get one factor of the
N-term product that is zero, which ensures that |Aψ – a| = 0. 

Two Useful Properties of Hermitian Matrices 

Determinant Invariance 
ABC = A B C 

S†SThis means S† AS = A = A 
N 

Aφ Aψso = = ∏a
i 

i=1 

Invariance of the product of eigenvalues 

Trace Invariance 
N N 

∑ Aii 
= ∑a

i 
i=1 i=1 

Representation of the sum of eigenvalues 

End of Non-Lecture 
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5.73 Lecture #11 11 - 10 
Can now solve many difficult appearing problems! 

Start with a matrix representation of any operator that is expressable as a 
function of a matrix. 

e.g. e−iH(t−t0 )/! 

propagator 
, 

f (x) 
potential curve 

prescription example 

f (x) = Tf (T†xT)T† 

!"# 
diagonalize x – so f( ) is 
applied to each diagonal 

⎛ elementx1 0 

x2 

⎞ 
⎜
⎜
⎜
⎜ 

⎟
⎟
⎟
⎟ 
⎠ 

T†xT = 
! 

0 xN⎝ 

⎛ ⎞ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

f (x1 ) 0 

f (x2 ) 
! 

0 f (xN ) 

⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

f (T†xT) = 

Then perform the inverse transformation, T f(T† x T)T† – undiagonalizes 
matrix, which gives matrix representation of the desired function of a matrix. 

Show that this actually is valid for simple example 

f (x) = xN 

⎡⎣ 

( )(T†xT)!(T†xT) 

= T T† 

Nf (x ) = T ⎡
⎣ 

⎤
⎦T†T†xT 

apply prescription 

1 2 N 

get expected result⎤⎦ 
N T T† = xNx 

general proof for arbitrary f(x) → expand in power series. Use previous result 
for each integer power. 

updated 9/25/20 9:31 AM 
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5.73 Lecture #11 11 - 11 
John Light: Discrete Variable Representation (DVR) 
General V(x) evaluated in Harmonic Oscillator Basis Set. 
we did not do H-O yet, but the general formula for all of the nonzero matrix 
elements of x in the harmonic oscillator basis set is: 

1/2 
! )1/2 )1/2 

n x n +1 = 
2ωµ (n +1 ω = (k µ 

⎤ 
⎥
⎦ 

⎡ 
⎢
⎣

⎛ 
⎛ 

⎞0 1 0 ! ! 

1 0 2 ! ! 

0 2 0 3 0 
" " 3 0 4 
" " " 4 0 

0 0 0 0 0 ⎞⎜
⎜ 
⎜ 
⎜ 
⎜
⎜
⎜⎝ 

⎟ 
⎟
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

= 

⎜ 
⎜ 
⎜
⎜ 
⎜
⎝ 

⎟ 
⎟ 
⎟
⎟ 
⎟
⎠ 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

1/2
⎤ 
⎥
⎦ 

!(infinite dimension matrix) x = 
⎡ 
2ωµ⎢
⎣ 

[CARTOON] 
n = 0 1 2 3 4 5 6 7 8 

⎡ ⎤ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥⎦ 

⎞ 
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠ 

⎛ 1 0 2 0 0 0 0 0 0 
0 3 0 6 0 0 0 0 0 

0 

1 

2 
3 

4 
5 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢⎣ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

2 0 5 0 12 0 0 0 0 
0 6 0 7 0 0 0 0 

!2 = 
⎡ ⎤ 

⎥
⎦ 

0 0 12 0 9 0 0 0x 
2ωµ⎢

⎣ 0 0 0 0 11 0 0 
0 0 0 0 0 13 0 
0 0 0 0 0 0 15 " 
0 0 0 0 0 0 " " 

6 -two off-main diagonal 
[n(n+1)]1/2 

-main diagonal ∣2n+1〉

etc. matrix multiplication 

to get matrix for f(x) diagonalize e.g., 1000 × 1000 (truncated) x matrix that was 
expressed in harmonic oscillator basis set. 
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5.73 Lecture #11 11 - 12 

⎛x1 0 0 0 ⎞ 
diagonalized-x basis⎜

⎜
⎜
⎜ 

⎟
⎟
⎟
⎟ 

0 x 2 0 0 
0 0 ! 0 

{xi} are eigenvalues. 
They have no 

obvious physical 
T†xT = 

0 0 0 x1000 
significance.⎝ ⎠ x 

V(x1) 0 0 0 
0 V(x 2 ) 0 0 
0 0 ! 0 

⎛ ⎞ 
⎜
⎜
⎜
⎜ 

⎟
⎟
⎟
⎟ 

next transform back 
from x-basis to 
H-O basis setV(x)x = 

0 0 0 V(x1000 )⎝ ⎠ x 

⎞⎛ 
⎜ 
⎜ 
⎜ 
⎜
⎝ 

full 
complicated 

matrix 

⎟
⎟
⎟
⎟

1000 1000×⎠ 

V(x)H−O = TV(x)x T
† = T was determined 

when x was 
diagonalized 

H −O 

p2 
H = + V(x) 

2µ 

need matrix for p2, get it from p (the general formula for all non-zero 
matrix elements of p) 
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5.73 Lecture #11 11 - 13 

−i !(ωµ ) 1/ 2 
= 

⎣⎢ 2 ⎦⎥ 

1/2 

⎥ 

⎜ 

⎤ 

⎜
⎜
⎜
⎜
⎜ 

⎡ 

⎤
⎦ 

( )1/ 2n p n + 1 n + 1 

⎛ ⎞0 1 0 0 0 

0 − 2 0 0 0 
" 
⎟ 

⎟
⎟
⎟
⎟
⎟ 
"⎠ 

− 1 0 2 0 0 same structure as x 

p = − i !(ωµ)
⎢ 2 
⎡
⎣ 

0 0 " " 

0 0 " " 

−1 0 2 0 0 
0 −3 0 " 0 

" 

" 

⎝ 
⎛ ⎞ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝ 

− 
!(ωµ )
⎢ 2 
⎡
⎣ ⎥ 

⎤ 
⎦

p2 2 0 −5 0= 
0 " " " 

0 " " " 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠ 

H= 
p2 

+ 
1 

2µ 

1 1
2 
ω2⎛

⎝⎜ 

2 0 0 0 

⎞
⎠⎟ 

1/ 2 0 0 0 
0 

kx 2 k =if µ
2 2 

⎛ 
⎜
⎜
⎜
⎜⎝ 

⎛⎞ ⎞ 
⎟ 
⎟ 
⎟
⎟⎠ 

= !ω 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

0 6 0 0 
0 0 10 0 
0 0 0 14 

3 / 2 0 0 
0 

ω!H = 
4 0 5 / 2 0 

00 0 " 

but for arbitrary V(x), express H in HO basis set, 

= 
p2 
HO HHO + V(x)HO 2µ 

TV(x)xT† 

⎛ E1 0 0 
0 ! 0 
0 0 EN 

⎞ 
⎟
⎟
⎟⎠ 

⎜ 
⎜ 
⎜⎝ 

eigenvalues obtained by S†HHOS = 

columns of S† are eigenvectors in HO basis set! 

updated 9/25/20 9:31 AM 
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5.73 Lecture #11 11 - 14 

1. Express matrix of x in H-O basis (automatic; easy to program a 
computer to do this), get xHO. 

2. Diagonalize xHO. Get xx and T. 

3. Trivial to write V(x)x as V(xi) = V(x)x in x basis 

4. Transform V(x)x back to V(x)HO 

5. Diagonalize HHO. 

Solve many V(x) problems in this basis set. 

1000 × 1000 T matrix diagonalizes x ⇒ 1000 xi ’s 

Save the T and the {xi} for future use on all V(x) problems. 

To verify convergence, repeat for new x matrix of dimension 1100 × 1100. There 
will be no obvious resemblance between 

xi and xi{ }1000 { }1100 . 
If the lowest energy eigenvalues of H (i.e. the ones you care about) do not change 
(by measurement accuracy), converged! 

Next: Matrix Solution of Harmonic Oscillator (completely without wavefunctions, 
starting from the [x,p] commutation rule) 

Then (at last) Perturbation Theory 
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