Matrix Elements of Many-Electron Wavefunctions

Last time:
$v=\left[-\frac{\Re}{E_{n, \ell}}\right]^{1 / 2}$ non-integer principal quantum number $\left(\mathrm{E}_{\infty, \ell}=0\right)$
$\left.f_{\ell}(v, r)\right\} \quad$ two linearly independent solutions to Schrödinger Equation are $g_{\ell}(v, r) \quad$ valid outside sphere of radius r_{0}

Need both f and g to satisfy boundary condition for $\mathrm{E} \rightarrow 0$ as $\mathrm{r} \rightarrow \infty$ $v=n-\mu_{\ell}($ non-integer $v)$ $\pi \mu_{\ell}$ is phase shift of $f_{\ell}(\mathrm{v}, r)$
Infinite set of integer-spaced v-values that satisfy the $\mathrm{r} \rightarrow \infty$ boundary condition

Wave emerges from the core with v-independent phase. Core transforms wave with correct $\mathrm{r} \rightarrow 0$ limiting behavior into one that exits the sphere of radius r_{0}, which contains the core region, with $\pi \mu_{\ell}$ phase shift.

Core is sampled by a set of different ℓ values.
Today:
Wavefunctions and Energy States of many-electron atoms: a magic decoder

1. (spin) orbitals \rightarrow configurations \rightarrow L-S states
2. electrons are Fermions $\rightarrow \psi$ must be "antisymmetrized": KEY PROBLEM
3. Slater determinants are antisymmetric with respect to all e_{i}^{-}, e_{j}^{-}permutations
A. Normalization
B. Matrix Elements of one-e ${ }^{-}$Operators: e.g. $\mathbf{H}^{\mathrm{so}}=\sum_{i} a\left(r_{i}\right) \ell_{i} \cdot \mathbf{s}_{i}$
C. $\underset{\text { (a very strong "perturbation") }}{\text { Matrix }}$ Elements of two-e- Operators: e.g. $\mathbf{H}^{e}=\sum_{i>j} e^{2} / \mathbf{r}_{i j}$
next few lectures
4. $\quad \mathrm{H}^{\text {eff }}$ in terms of $\varepsilon_{n e}, \underbrace{F^{k}, G^{k}, G_{\text {saer-Condon }}^{k} 1 / \text { spin. }_{\text {orbit }}}_{\begin{array}{c}\text { orbital } \\ \text { energy }\end{array}}, \zeta_{n e}$ parameters

Page $31-9$ is an example of what we will be able to do.

* Interpretable trends: Periodic Table
* Atomic energy levels: mysterious code - no atom-to-atom relationships evident without magic decoder ring.

Many-electron \mathbf{H}

$$
\mathbf{H}=\underbrace{\sum_{i=1}^{N} \mathbf{h}(i)}_{\mathbf{H}^{(0)}}+\underbrace{\sum_{i>j=1}^{N} \frac{e^{2}}{r_{i j}}+\sum_{i} a\left(r_{i}\right) \ell_{i} \cdot \mathbf{s}_{i}}_{\mathbf{H}^{(1)}}
$$

sum of hydrogenic
1- e^{-}terms: $-\frac{Z^{2} \Re}{n^{2}}=-\varepsilon_{n} \quad$ (unshielded hydrogenic orbital energies)

How do we set up a matrix representation of this \mathbf{H} ?
take as much as possible out of $\left\langle\mathbf{H}^{(1)}\right\rangle$ $\mathbf{H}^{(0)}$ defines the basis set (complete, orthonormal, ...)

$$
[\mathbf{h}(1)+\mathbf{h}(2)] \phi(1) \phi(2)=[\mathbf{h}(1) \phi(1)] \frac{\phi(2)}{L_{\mathrm{a}} \text { constant with respect to } \mathbf{h}(1) .}+[\mathbf{h}(2) \phi(2)] \phi(1)
$$

\mathbf{H} as sum, E as sum, but get ψ as product
Electronic Configuration: list of orbital occupancies
e.g. C $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$ six e^{-}

This is not sufficient to specify the state of a system

Several L, S terms arise from this configuration: e.g. $p^{2} \rightarrow{ }^{1} D,{ }^{3} P,{ }^{1} S$

$$
\vec{L} \equiv \sum_{i} \vec{\ell}_{i} \quad \vec{S} \equiv \sum_{i} \vec{s}_{i} \quad \vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1}
$$

We know that $\mathbf{L}^{2}, \mathbf{L}_{\mathrm{z}}, \mathbf{S}^{2}, \mathbf{S}_{\mathrm{z}}$ commute with $\mathbf{h}(i)+\frac{e^{2}}{\mathrm{r}_{i j}} \quad\left|r_{12}\right|=\left[\left|r_{1}\right|^{2}+\left|r_{2}\right|^{2}-\underset{\substack{\text { vector with respect to } \ell_{1} \text { and } \ell_{2} \\ \text { So we can use thse to bock diagonalize } \mathbf{H}}}{\text { scalar with respect to } \mathrm{L}} \mathrm{r}_{2}\right.$
Note that although ℓ_{i} does not commute with $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{i} j}$, this is not a problem for s_{i}^{2} and $\mathrm{s}_{i z}$ because $\mathbf{h}(i)$ and $\mathrm{r}_{i j}$ do not involve spin. $\mathrm{r}_{i j}$ destroys ℓ_{i} but does not destroy L !

How do we get eigenstates of $\mathbf{L}^{2}, \mathbf{L}_{z}, \mathbf{S}^{2}, \mathbf{S}_{z}$
either: I. Method of $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ boxes
Advanced Inorganic Chemistry Course
Which L-S "terms" exist, but not the specific linear combinations of spin-orbital products that correspond to these terms.
II. Angular momentum coupling techniques:

3 -j coefficients
ladders plus orthogonality
projection operators
We will return to this problem and approach it in all 3 angular momentum coupling ways.

One rigorous symmetry must be imposed:
Pauli Exclusion Principle: electrons are Fermions and therefore any acceptable wavefunction must be antisymmetric with respect to permutation of ANY pair of e^{-}

$$
\begin{aligned}
& \text { e.g. } \quad \begin{array}{c}
|1,2\rangle=\left|\mu_{1}(1)\right\rangle\left|\mu_{2}(2)\right\rangle \\
\text { orbitals }
\end{array} \text { electrons } \\
& \mathbf{P}_{12}|1,2\rangle=\left|\mu_{1}(2)\right\rangle\left|\mu_{2}(1)\right\rangle \equiv|2,1\rangle \\
& \mathrm{e}^{-} \text {are indistinguishable, } \therefore\left[\mathbf{H}, \mathbf{P}_{\mathrm{ij}}\right]=0 \\
& \therefore \text { all } \psi^{\prime} \text { s must belong to }+ \text { or }- \text { eigenvalue of } \mathbf{P}_{\mathrm{ij}}\left(\text { note that } \mathbf{P}_{\mathrm{ij}}^{2}=\mathbf{I}\right) \\
& +\quad \text { Boson (integer spin) } \\
& \text { - Fermion (1/2-integer spin) } \\
& \psi_{ \pm}=2^{-1 / 2}[|1,2\rangle \pm|2,1\rangle] \\
& \mathbf{P}_{12} \psi=2^{-1 / 2}[|2,1\rangle \pm|1,2\rangle]= \pm \psi
\end{aligned}
$$

generalize to $3 \mathrm{e}^{-}$? 3 ! combinations needed! Horrible!

* ψ 's have N ! terms (each is a product of N spin-orbitals)
* matrix elements have (N ! $)^{2}$ additive terms! Even more horrible!

TRICK! Slater Determinants

You show that a 3×3 Slater determinant gives 6 additive product terms
Determinants are of $\mathrm{N} \times \mathrm{N}$ dimension

* N ! additive terms in expansion of determinant
* determinant changes sign upon permutation of ANY two rows [e^{-}'s] or columns [spin-orbitals]
* determinant is zero if any two rows or columns are identical.
* determinant may be uniquely specified by its main diagonal

MUST SPECIFY IN ADVANCE A STANDARD ORDER IN WHICH THE SPIN-ORBITALS ARE TO BE LISTED ALONG THE MAIN DIAGONAL

$$
\text { e.g. } \quad \mathrm{s} \alpha, \mathrm{~s} \beta, \mathrm{p} 1 \alpha, \mathrm{p} 1 \beta, \mathrm{p} 0 \alpha, \mathrm{p} 0 \beta, \mathrm{p}-1 \alpha, \mathrm{p}-1 \beta, \ldots
$$

[or for p^{N}, suppress p in notation: $1 \alpha 1 \beta 0 \alpha \rightarrow M_{L}=2, M_{S}=1 / 2$]
Need a fancy notation to demonstrate how Slater determinants are to be manipulated in evaluating matrix elements. This notation is meant to be forgotten as soon as it has served its immediate purpose here.

\wp is ONE prescription for rearranging the orbitals from the initially specified order
\wp is product of several \mathbf{P}_{ij} 's or, more useful for proving theorems, a product of N factors \mathbf{P}_{i} which specify whether the $i^{\text {th }}$ electron is to be left in the $i^{\text {th }}$ spin-orbital or transferred to some unspecified spin-orbital

$$
\wp\left[\left|\mu_{1}(1)\right\rangle \ldots\left|\mu_{N}(N)\right\rangle\right] \prod_{i=1}^{N}\left|P_{i} \mu_{i}(i)\right\rangle
$$

A. Normalization

Verify that $(N!)^{-1 / 2}$ is the correct normalization factor

$$
\left\langle\psi_{N} \mid \psi_{N}\right\rangle=(N!)^{-1} \sum_{\wp, \not-\wp^{\prime}}(-1)^{p+p^{\prime}} \wp\left[\left\langle u_{1}(1)\right| \ldots\left\langle u_{N}(N)\right|\right] \wp^{\prime}\left[\left|u_{1}(1)\right\rangle \ldots\left|u_{N}(N)\right\rangle\right] .
$$

Now rearrange into products of one-e- ${ }^{-}$overlap integrals,

$$
\left\langle\psi_{N} \mid \psi_{N}\right\rangle=(N!)^{-1} \sum_{\wp, \not-\beta^{\prime}}(-1)^{p+p^{\prime}} \prod_{i=1}^{N}\left\langle\mathbf{P}_{i} u_{i}(i) \mid \mathbf{P}_{i}^{\prime} u_{i}(i)\right\rangle
$$

The $\left|u_{i}\right\rangle$ are orthonormal.
$\langle u(i) \mid u(j)\rangle$ has no meaning because the bra and ket must be associated with the same e^{-}

The only non-zero legal terms in $\sum_{\mathfrak{Q}^{\prime}}$ are those where EACH $\mathbf{P}_{i}=\mathbf{P}_{i}^{\prime}$
otherwise there will be at least 2 mis-matched bra-kets

$$
\begin{gathered}
\left\langle u_{i}(k) \mid u_{j}(k)\right\rangle \ldots\left\langle u_{j}(\ell) \mid u_{i}(\ell)\right\rangle \\
=0 \\
=0
\end{gathered}
$$

(Here the electron names match in each bra-ket, but the spin-orbital quantum numbers do not match.)

Thus it is necessary that $\wp=\wp^{\prime}, p=p^{\prime},(-1)^{p+p^{\prime}}=+1$ and

$$
\left\langle\psi_{N} \mid \psi_{N}\right\rangle=(N!)^{-1} \sum_{\wp} \wp\left[\left\langle\mu_{1}(1)\right| \underset{1}{\left.\mu_{1}(1)\right\rangle}=\ldots\left\langle\mu_{n}(N)\right| \underset{\substack{\mu_{n} \\ \mu_{1}(N)}}{ }\right]
$$

Each term in sum over p gives +1 , but there are N possibilities for $\mathbf{P}_{1}, N-1$ possibilities for \mathbf{P}_{2}.
$\therefore \mathrm{N}$! possibilities for sum over \wp
$\left\langle\psi_{N} \mid \psi_{N}\right\rangle=(N!)^{-1} \sum^{N} 1=1$
Thus the assumed (N ! $)^{-1 / 2}$ normalization factor is correct.
B. Matrix elements of one-electron operators

$$
\begin{aligned}
& \mathbf{F}=\sum_{i} f\left(\mathbf{r}_{i}\right) \quad \text { e.g. } \overrightarrow{\mathbf{L}}=\sum_{i} \vec{l}_{i} \\
&\left|\psi_{A}\right\rangle \equiv(N!)^{-1 / 2} \sum_{\wp}(-1)^{p} \wp\left|a_{1}(1)\right\rangle \ldots\left|a_{N}(N)\right\rangle \\
&\left|\psi_{B}\right\rangle \equiv(N!)^{-1 / 2} \sum_{\wp^{\prime}}(-1)^{p^{\prime}} \wp \wp^{\prime}\left|b_{1}(1)\right\rangle \ldots\left|b_{N}(N)\right\rangle \\
&\left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{B}\right\rangle=(N!)^{-1} \sum_{i, \nless, \wp^{\prime}}(-1)^{p+p^{\prime}} \wp\left[\left\langle a_{1}(1)\right| \ldots\right] f\left(\mathbf{r}_{i}\right) \wp \wp^{\prime}\left[\left|b_{1}(1)\right\rangle \ldots\right] \\
&=(N!)^{-1} \sum_{i, \wp, \wp^{\prime}}(-1)^{p+p^{\prime}}\left[\left\langle\mathbf{P}_{1} a_{1}(1) \mid \mathbf{P}_{1} b_{1}(1)\right\rangle\right] \\
& \ldots\left[\left\langle\mathbf{P}_{i} a_{i}(i)\right| f\left(\mathbf{r}_{i}\right)\left|\mathbf{P}_{i}^{\prime} b_{i}(i)\right\rangle\right] \ldots\left[\left\langle\mathbf{P}_{N} a_{N}(N) \mid \mathbf{P}_{N}^{\prime} b_{N}(N)\right\rangle\right] \\
& \text { special term because indices match for } e^{-} \text {in both orbitals and the }
\end{aligned}
$$ operator.

There is a product of N orbital matrix element factors in each term of sum. Of these, $\mathrm{N}-1$ are orbital overlap integrals and only one involves the one-e- operator.

Consider the 3 possibilities for $1-\mathrm{e}^{-}$operators: $\Delta \mathrm{so}=0,=1$ or >1.
$\underline{\text { SELECTION RULE }}\left\langle\Psi_{A}\right| \mathrm{F}\left|\Psi_{B}\right\rangle=0$ if $\left|\Psi_{A}\right\rangle$ and $\left|\Psi_{\mathrm{B}}\right\rangle$ differ by more than one spin-orbital (because at least one of the orbital overlap integrals would be zero)
two cases remain:

1. differ by one spin-orbital

$$
\begin{aligned}
& \left|\psi_{A}\right\rangle=\left\|u_{1}(1) \ldots a_{k}(k) \ldots u_{N}(N)\right\| \| \begin{array}{l}
\text { the mismatched orbitals are in } \\
\left|\psi_{B}\right\rangle=\left\|u_{1}(1) \ldots b_{k}(k) \ldots u_{N}(N)\right\| \\
\text { the same }\left(\mathrm{k}^{\text {th }}\right) \text { position }
\end{array}
\end{aligned}
$$

Use u_{i} to denote common spin-orbitals
Use a_{k}, b_{k} to denote unique spin-orbitals

For this choice, all N P factors of each \wp must be identical to all N factors of \wp^{\prime}.
There is an additional requirement: f must bring mismatched orbitals into i-th position so that they match up with the $f\left(\mathbf{r}_{\mathrm{i}}\right)$ operator to give $\left\langle a_{k}(i)\right| f\left(\mathbf{r}_{i}\right)\left|b_{k}(i)\right\rangle$.

ANY OTHER ARRANGEMENT GIVES

$$
\underbrace{\left\langle a_{k}(j) \mid b_{k}(j)\right\rangle}_{=0}\langle\underbrace{\left\langle u_{i}(i)\right| f\left(\mathbf{r}_{i}\right)\left|u_{i}(i)\right\rangle}_{\neq 0}=0
$$

($\mathrm{N}-1$)! ways of arranging the e^{-}in the other $\mathrm{N}-1$ matched orbitals and there are N identical terms (in which the e^{-}is in the privileged location) in the sum over i

$$
\left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{B}\right\rangle=\left(\underset{\sim}{N!)^{-1}(N-1)!N\left\langle a_{k}\right| \mathbf{f}\left|b_{k}\right\rangle} \underset{\text { from the }(\mathrm{N}!)^{-1 / 2} \text { normalization factor for each }|\psi\rangle}{ }\right.
$$

If the order of spin-orbitals in ψ_{A} or ψ_{B} must be arranged away from the standard order in order to match the positions of a_{k} and b_{k}, then we get an additional factor of $(-1)^{\mathrm{p}}$ where p is the required number of binary permutations

$$
\begin{array}{ll}
& \left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{B}\right\rangle=(-1)^{p}\left\langle a_{k}\right| \mathbf{f}\left|b_{k}\right\rangle \begin{array}{l}
\text { for a difference } \\
\text { of one } \\
\text { spin-orbital }
\end{array} \\
\text { i.e. } & A=\|1257\| \\
B=\|1235\|=-\|1253\| \quad \begin{array}{l}
\text { (one binary permutation } \\
\text { is required) }
\end{array} \\
& \left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{B}\right\rangle=-\langle 7| \mathbf{f}|3\rangle
\end{array}
$$

2. $\psi_{A}=\psi_{B}$ Differ by zero spin-orbitals

$$
\left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{A}\right\rangle=(N!)^{-1} \sum_{i, \wp}\left[\left\langle\mathbf{P}_{i} a_{i}(i)\right| \mathrm{f}\left(\mathbf{r}_{i}\right)\left|\mathbf{P}_{i} a_{i}(i)\right\rangle\right]
$$

N ! identical terms from sum over \wp [again $(N-1)!N]$

$$
\left\langle\psi_{A}\right| \mathbf{F}\left|\psi_{A}\right\rangle=\sum_{i}\left\langle a_{i}\right| f\left(\mathbf{r}_{i}\right)\left|a_{i}\right\rangle
$$

$\left.\begin{array}{cc}\text { * } & \text { Normalization } \\ \text { * and } \\ \text { * } & 1-e^{-} \text {Operator } \mathbf{F}\end{array}\right\} \begin{aligned} & \text { comes out almost the same as naive } \\ & \text { expectation WITHOUT need for } \\ & \text { antisymmetrization! }\end{aligned}$

$$
\begin{aligned}
& \psi=\|3 \alpha 1 \alpha-2 \alpha\| \quad(\lambda=3, \lambda=1, \lambda=-2) \\
& \begin{array}{l}
\left\langle\mathrm{L}_{z}\right\rangle=\hbar(3+1-2)
\end{array} \\
& \begin{aligned}
\left\langle\mathrm{L}_{z} \mathrm{~S}_{z}\right\rangle=\hbar^{2}\left(\frac{3}{2}+\frac{1}{2}-1\right)
\end{aligned} \\
& \qquad \mathrm{J}_{+}| | 3 \alpha 1 \alpha-2 \alpha \| \\
& =\mathrm{L}_{+}| | 3 \alpha 1 \alpha-2 \alpha\left\|+\mathrm{S}_{+}\right\| 3 \alpha 1 \alpha-2 \alpha \| \\
& \quad=\hbar\left[0+10^{1 / 2}\|3 \alpha 2 \alpha-2 \alpha\|+10^{1 / 2}\|3 \alpha 1 \alpha-1 \alpha\|+0+0+0\right]
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

