5.73

Quiz 1

> A is a complex number $\quad \mathrm{A} \equiv a+\mathrm{i} b(a$ and b are real $)$ $\mathrm{A}^{*} \equiv a-\mathrm{i} b$ $\mid \mathrm{Al}^{2}=\mathrm{AA}^{*}$ $\operatorname{Re}^{\mathrm{A} \text { means real part of } \mathrm{A}: \operatorname{Re} \mathrm{A}=a}$ Im A means imaginary part of $\mathrm{A}: \operatorname{Im} \mathrm{A}=b$ $e^{*}=\cos x+\operatorname{isin} x$
A. $\quad \mathrm{A}=4+\mathrm{i} 3$. Evaluate $\mid \mathrm{A}^{2}$.
B. What is $\operatorname{Im}\left[(4+i 3) e^{i 2 x}\right]$.
C. $\quad\left|(4+i 3) e^{i 2 x}\right|^{2}$.

A. Which eigenstates (even n or odd n) have a node at $x=a / 2$?
B. There is one internal node in ψ_{2}. How many internal nodes are there in $\psi_{13}(x)$?
C. Do the eigenfunctions, $\left\{\psi_{n}\right\}$, change if the potential is shifted up by V_{0} ? Why?

D. Is there any change in the energy levels, $\left\{\mathrm{E}_{\mathrm{n}}\right\}$, if the potential is shifted to the left by $\mathrm{a} / 2$?

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

