5.73

Quiz 35 ANSWERS

For p³ configuration: The $M_L = 0, M_S = 1/2$ block contains $||1\alpha 0\alpha - 1\beta||, ||1\alpha 0\beta - 1\alpha||$, and $||1\beta 0\alpha - 1\alpha||$. For $M_L = 0$, \mathbf{L}^2 may be replaced by $\mathbf{L}_+ \mathbf{L}_-$. $\mathbf{L}^2 ||1\alpha 0\alpha - 1\beta|| = \hbar^2 [2||1\alpha 0\alpha - 1\beta|| - 2||1\alpha 0\beta - 1\alpha||]$ $\mathbf{L}^2 ||1\alpha 0\beta - 1\alpha|| = \hbar^2 [4||1\alpha 0\beta - 1\alpha|| - 2||1\beta 0\alpha - 1\alpha|| - 2||1\alpha 0\alpha - 1\beta||]$ $\mathbf{L}^2 ||1\beta 0\alpha - 1\alpha|| = \hbar^2 [2||1\beta 0\alpha - 1\alpha|| - 2||1\alpha 0\beta - 1\alpha||]$

Α.	Set up the L^2 matrix for the $M_L = 0$, $M_S = 1/2$ block.	
	Row Label L^2 matrix	
	$ 1\alpha 0\alpha - 1\beta $ $(2 -2 0)$	
	$ 1\alpha0\beta-1\alpha $ $\hbar^2 $ -2 4 -2	
	$ 1\beta 0\alpha - 1\alpha \qquad (0 -2 2)$	

B. Find the normalized eigenvector of \mathbf{L}^2 that corresponds to $|{}^2 D M_L = 0, M_S = 1/2 \rangle$ $(\mathbf{L}^2) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \hbar^2 6 \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ $1 = [|a|^2 + |b|^2 + |c|^2]^{1/2}$ $1 = [a^2 + b^2 + c^2]^{1/2} = 1$ $[a^2 + b^2 + c^2]^{1/2} = 1$ $[a^2 + b^2 + c^2]^{1/2} = 1$ $[a^2 + 4a^2 + a^2]^{1/2} = 1$ $[a^2 + 4a^2 + a^2]^{1/2} = 1$ Thus: $a = 6^{-1/2}, b = -2 \cdot 6^{-1/2}, c = 6^{-1/2}$

Verify:

$$\hbar^{2} \begin{pmatrix} 2 & -2 & 0 \\ -2 & 4 & -2 \\ 0 & -2 & 2 \end{pmatrix} 6^{-1/2} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \hbar^{2} 6^{-1/2} \begin{pmatrix} 6 \\ -12 \\ 6 \end{pmatrix}$$

$$= 6\hbar^{2} 6^{-1/2} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.