Infinite Box, $\delta(x)$ Well, $\delta(x)$ Barrier.

Last Time: free particle $\mathrm{V}(\mathrm{x})=\mathrm{V}_{0}$

$$
\psi=\mathrm{Ae}^{\mathrm{i} k \mathrm{x}}+\mathrm{Be}^{-\mathrm{i} k \mathrm{x}} \quad \text { general solution }
$$

A,B are complex constants, determined by "boundary conditions"
$k=\frac{p}{\hbar}$ (from $e^{i k x}$, an eigenfunction of \hat{p} for a free particle, and the real number, $\hbar k=p$, is the eigenvalue of \hat{p})
$k=\left[\left(E-V_{0}\right) \frac{2 m}{\hbar^{2}}\right]^{1 / 2} \quad$ for $E \geq V_{0}$
probability
distribution

$$
P(x)=\psi^{*} \psi=\underbrace{|A|^{2}+|B|^{2}}_{\text {const. }}+\underbrace{2 \operatorname{Re}\left(A^{*} B\right) \cos 2 k x+2 \operatorname{Im}\left(A^{*} B\right) \sin 2 k x}_{\text {wiggly, real at all } x}
$$

only get wiggly stuff when ψ contains a superposition of 2 or more different values of k are superimposed. In this special case we had the two values of
TODAY $k:+k$ and $-k$.

1. infinite box
2. $\delta(\mathrm{x})$ well
3. $\delta(\mathrm{x})$ barrier (non-lecture)

What do we know about a $\psi(\mathrm{x})$ for a physically realistic $\mathrm{V}(\mathrm{x})$?

$$
\psi(\pm \infty)=\text { ? }
$$

$$
\psi^{*}(x) \psi(x) \text { for all } x ?
$$

$$
\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x ?
$$

Continuity of ψ and $d \psi / d x$?
Computationally convenient potentials have steps and flat regions.

infinite step
finite step
infinitely high but infinitely thin step," δ-function"

$$
\psi \text { continuous }
$$

$\frac{\mathrm{d} \psi}{\mathrm{dx}}, \frac{\mathrm{d}^{2} \psi}{\mathrm{dx}}$ not continuous for infinite step, and not for δ-function $\frac{d \psi}{d x}$ is continuous for finite step

More warm up exercises

1. Infinite box

$\psi(x)=A e^{i k x}+B e^{-i k x}=C \cos k x+D \sin k x \quad[C=A+B, D=i A-i B]$
Where do these 2 equations come from? Be sure you can derive (and never forget) these 2 equations for C and D.

Boundary conditions:
$\psi(0)=0 \Rightarrow C=0$
$\psi(L)=0 \Rightarrow k L=n \pi \quad n=1,2, \ldots \quad($ why $n o t \mathrm{n}=0$?)

5.73 Lecture \#2

2-3
recall
$k^{2}=\left(E-V_{0}\right) \frac{2 m}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{L^{2}} \quad V_{0}=0$
here.
Insert $k L=n \pi$ boundary condition

$$
\begin{gathered}
E_{n}=n^{2} \frac{\hbar^{2} \pi^{2}}{2 m L^{2}}=n^{2}\left[\frac{h^{2}}{8 m L^{2}}\right] \quad \begin{array}{l}
n=0 \text { would be } \\
\text { empty box! }
\end{array} \\
\infty \# \text { of bound levels }
\end{gathered}
$$

E_{n} is integer multiple
of common factor, E_{1}.
Important for many
wavepacket problems! normalization ($\mathrm{P}=1$ for 1 particle in well)

$$
\begin{array}{lc}
1=|D|^{2} \int_{0}^{L} d x \sin ^{2}(n \pi x / L) & \Longrightarrow \\
\psi_{n}(x)=(2 / L)^{1 / 2} \sin (n \pi x / L) & |D|=(2 / L)^{1 / 2} \quad \text { because } \int_{0}^{\mathrm{L}} \sin ^{2}(\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \mathrm{dx}=\mathrm{L} / 2 \\
D=(2 / L)^{1 / 2} \underbrace{e^{i a}}_{\substack{\text { arbitrary } \\
\text { phase } \\
\text { factor }}}
\end{array}
$$

cartoons of $\psi_{n}(x)$: what happens to $\left\{\psi_{n}\right\}$ and $\left\{\mathrm{E}_{n}\right\}$ if we move the well:
left or right in x ?
up or down in E ?

There is always a short-cut. A picture is often more informative than equations.

Infinite well was easy: 2 boundary conditions plus a normalization requirement.

Generalize to stepwise constant potentials: in each $\mathrm{V}(\mathrm{x})=$ constant region, need to know 2 complex coefficients and, if the particle is confined within a finite range of x, there is quantization of energy.

* boundary and joining conditions
* normalization
* overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so obvious. $\delta(x)$ well and barrier.

Schrödinger $\frac{d^{2} \psi}{d x^{2}}=-(\underbrace{(E+a \delta(x)}_{E-V(x)}) \frac{2 m}{\hbar^{2}} \psi$
Equation
Integrate: $\begin{array}{r}\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{+\varepsilon} \frac{d^{2} \psi}{d x^{2}} d x=-\lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{+\varepsilon} d x\left(\frac{2 m E}{\hbar^{2}} \psi(x)+\frac{2 m a}{\hbar^{2}} \delta(x) \psi(x)\right)\right] \\ \left.R H S\right|_{x=+\varepsilon}-\left.\frac{d \psi}{d x}\right|_{x=-\varepsilon}=\end{array} \begin{gathered}\text { size of discontinuity in } \\ \frac{d \psi}{d x} \text { at } \mathrm{x}=0\end{gathered}$
0
because
$\frac{2 m E}{\hbar^{2}} \psi(0)$
is finite and the integral is over region of length $2 \varepsilon \approx 0$.
because, by the definition of a $\delta-\mathrm{fn}$,

$$
\int \delta(x) \psi(x) \mathrm{dx}=\psi(0)
$$

or, more generally
$\int_{-\infty}^{\infty} \delta(x-a) \psi(x) d x=\psi(a)$

This is a really important derivation. You will want to remember it!

Since the potential has even symmetry with respect to $\mathrm{x} \rightarrow-\mathrm{x}, \psi(\mathrm{x})$ must be even or odd (not a mixture) with respect to $\mathrm{x} \rightarrow-\mathrm{x}$, thus $\psi(\mathrm{x})= \pm \psi(-\mathrm{x})$. If $\psi(\mathrm{x})$ is an even function, there must be a cusp in $\psi(x)$ at $x=0$

BUT NOT

$$
\frac{\mathrm{d} \psi(+)}{\mathrm{dx}}-\frac{\mathrm{d} \psi(-)}{\mathrm{dx}}=-\frac{2 \mathrm{ma}}{\hbar^{2}} \psi(0)
$$

Thus we have a new connection condition on $\frac{d \psi}{d x}$
since there must be + reflection symmetry for an even $\psi(x)$

$$
\begin{gathered}
\frac{\mathrm{d} \psi(+)}{\mathrm{dx}}=-\frac{\mathrm{d} \psi(-)}{\mathrm{dx}} \\
\frac{d \psi(\pm)}{d x}=\mp \frac{m a}{\hbar^{2}} \psi(0) \\
\frac{d \psi(+)}{d x}-\frac{d \psi(-)}{d x}=-\frac{2 m a}{\hbar^{2}} \psi(0)
\end{gathered}
$$

This is the δ-function joining condition for a symmetric potential.

Now find the eigenfunctions and eigenvalues. Standard procedure: divide space into regions and match ψ and $d \psi / d x$ across boundaries.

Let $\mathrm{E}<0 \quad E=-|E|$

$$
\psi_{L} \equiv \psi_{\mathrm{I}}=A_{L} \mathrm{e}^{+\mathrm{kx}}+B_{L} \mathrm{e}^{-\mathrm{kx} x}
$$

$$
\psi_{R} \equiv \psi_{\mathrm{II}}=A_{R} e^{+\kappa x}+B_{R} e^{-\kappa x}
$$

$$
\kappa=\left[\frac{|E| 2 m}{\hbar^{2}}\right]^{1 / 2}
$$

$$
\kappa=i k
$$

(8 unknowns, because A and B can be complex numbers)

unknowns

determined

$$
\begin{array}{lll}
\psi(+\infty)=0 & & A_{\mathrm{R}}=0 \\
\psi(-\infty)=0 & & \mathrm{~B}_{\mathrm{L}}=0 \\
\psi_{\mathrm{L}}(-\varepsilon)=\psi_{\mathrm{R}}(+\varepsilon) & \mathrm{A}_{\mathrm{L}}=\mathrm{B}_{\mathrm{R}} \equiv \mathrm{~A} \\
& \begin{array}{c}
\text { arbitrary phase } \\
\text { normalization }
\end{array} & \tag{1}
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{A}_{\mathrm{R}}=0 & (2) & \\
\mathrm{B}_{\mathrm{L}}=0 & (2) & \psi_{\mathrm{L}}=\mathrm{Ae}^{\rho \mathrm{x}} \\
\psi_{\mathrm{R}}=\mathrm{Ae}^{-\rho \mathrm{x}}
\end{array}
$$

(1) Done! (8) TOTAL

$$
\therefore \kappa=\frac{m a}{\hbar^{2}}
$$

$$
\frac{d \Psi_{L}(-)}{d x}=+\kappa A e^{+0}=\frac{+m a}{\hbar^{2}} \frac{\psi(0)}{\mathrm{A}}
$$

$$
\text { again } \quad \kappa=\frac{m a}{\hbar^{2}}
$$

Only one acceptable value of $\kappa \rightarrow$ one value of $\mathrm{E}<0$

$$
\begin{aligned}
& \kappa=\frac{m a}{\hbar^{2}} \\
& |E|=\frac{\kappa^{2} \hbar^{2}}{2 m}=\frac{m a^{2}}{2 \hbar^{2}}=-E \\
& E=-\frac{m a}{2 \hbar^{2}}
\end{aligned}
$$

Actually, the above solution was specifically for an even $\psi(x)$. What about an odd $\psi(\mathrm{x})$ for a $\mathrm{V}(x)$ with a $\delta(x)$ at $\mathrm{x}=0$? No calculation is needed. Why?

Normalization of ψ

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty}|\psi|^{2} d x \\
& \psi_{R}=A e^{- \text {max } / \hbar^{2}} \\
& 1=2 \int_{0}^{\infty}|A|^{2} e^{-\left(2 m a / \hbar^{2}\right) x} d x=2|A|^{2}\left(\frac{\hbar^{2}}{2 m a}\right) \\
& A= \pm\left(\frac{m a}{\hbar^{2}}\right)^{1 / 2} \quad \begin{array}{l}
\text { see Gaussian }
\end{array} \\
& \text { Handout }
\end{aligned}
$$

$$
\psi_{\delta}= \pm\left(\frac{\mathrm{ma}}{\hbar^{2}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{ma|x|} / \hbar^{2}} \quad \begin{aligned}
& \text { only one bound } \\
& \text { level, regardless } \\
& \text { of magnitude of a }
\end{aligned}
$$

large a, narrower and taller ψ

There is a continuum of ψ 's possible for $\mathrm{E}>0$. Since the particle is free for $E>0$, specific form of ψ must reflect specific problem: e.g., particle probability incident from $\mathrm{x}<0$ region. It is even more interesting to turn this into the simplest of all barrier scattering problems. See Non-Lecture pp. 2-8, 9, 10.

Nonlecture

Consider instead scattering off of $\mathrm{V}(\mathrm{x})=+\mathrm{a} \delta(\mathrm{x}) \quad \mathrm{a}>0$

$$
\mathrm{V}(\mathrm{x})=+\mathrm{a} \delta(\mathrm{x})
$$

$\xrightarrow[0]{ } \mid$
$\psi_{L}=A_{L} e^{i k x}+B_{L} e^{-i k x}$
$\psi_{R}=A_{R} e^{i k x}+B_{R} e^{-i k x}$

$$
k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}
$$

In this problem let's assume that we have flux entering exclusively from the left. The entering probability flux is $\left|A_{L}\right|^{2}$.

Two things can happen:

1. transmit through barrier
$\propto\left|\mathrm{A}_{\mathrm{R}}\right|^{2}$
2. reflect at barrier
$\propto\left|B_{L}\right|^{2}$

There is no way that $\left|\mathrm{B}_{\mathrm{R}}\right|^{2}$ can become different from 0 . Why? (Hint: where does the flux enter the system and in what direction is it flowing?)

Our goal is to determine $\left|\mathrm{A}_{\mathrm{R}}\right|^{2}$ and $\left|\mathrm{B}_{\mathrm{L}}\right|^{2}$ vs. E .

$$
\begin{aligned}
& \psi_{\mathrm{L}}(0)=\psi_{\mathrm{R}}(0) \\
& \varlimsup_{\mathrm{L}} \text { continuity of } \psi \\
& \mathrm{A}_{\mathrm{L}}+\mathrm{B}_{\mathrm{L}}=\mathrm{A}_{\mathrm{R}}+\mathrm{B}_{\mathrm{R}} \quad \text { but } \mathrm{B}_{\mathrm{R}}=0 \quad \mathrm{~A}_{\mathrm{L}}+\mathrm{B}_{\mathrm{L}}=\mathrm{A}_{\mathrm{R}}
\end{aligned}
$$

$$
\left[\frac{d \psi_{R}(+0)}{d v}-\frac{d \psi_{L}(-0)}{d v}-\right]=+\frac{2 m a}{\hbar^{2}} \psi(0) \quad \text { discontinuity of } \frac{d \psi}{d X} \text { at } \delta \text {-function }
$$

$$
i k\left(A_{L}+B_{L}\right)-i k\left(A_{L}-B_{L}\right)=\frac{2 m a}{\hbar^{2}}\left(A_{L}+B_{L}\right)
$$

$$
\begin{aligned}
& 2 i k B_{L}=\frac{2 m a}{\hbar^{2}}\left(A_{L}+B_{L}\right) \\
& B_{L}\left(2 i k-\frac{2 m a}{\hbar^{2}}\right)=\frac{2 m a}{\hbar^{2}} A_{L} \\
& \frac{A_{L}}{B_{L}}=\frac{\hbar^{2}}{2 m a}\left(2 i k-\frac{2 m a}{\hbar^{2}}\right)=\frac{i k \hbar^{2}}{m a}-1 \equiv \alpha \\
& \alpha+1=\frac{i k \hbar^{2}}{m a} \\
& A_{R}=A_{L}+B_{L}=A_{L} \frac{B_{L}}{B_{L}}+B_{L}=\alpha B_{L}+B_{L}=B_{L}(\alpha+1) \\
& A_{R}=B_{L}\left(\frac{i k \hbar^{2}}{m a}\right)
\end{aligned}
$$

Transmission is $\quad \mathrm{T}=\frac{\left|\mathrm{A}_{\mathrm{R}}\right|^{2}}{\left|A_{L}\right|^{2}}: \quad \frac{\text { (moving to right in } \mathrm{R} \text { region) }}{\text { (incident from left in L region) }}$
Reflection is $\quad \mathrm{R}=\frac{\left|\mathrm{B}_{\mathrm{L}}\right|^{2}}{\left|A_{L}\right|^{2}}: \quad \frac{\text { (moving to left in } \mathrm{L} \text { region) }}{\text { (incident from left in L region) }}$
What is $T(E), R(E)$?

$$
\left|A_{R}\right|^{2}=\left|B_{L}\right|^{2} \frac{k^{2} \hbar^{4}}{m^{2} a^{2}}=\left|B_{L}\right|^{2} \frac{2 m E}{\hbar^{2}} \frac{\hbar^{4}}{m^{2} a^{2}}=\left|B_{L}\right|^{2} \frac{2 \hbar^{2} E}{m a^{2}}
$$

$\left(\frac{A_{L}}{B_{L}}\right)\left(\frac{A_{L}}{B_{L}}\right)^{*}=\left(\frac{i k \hbar^{2}}{m a}-1\right)\left(-\frac{i k \hbar^{2}}{m a}-1\right)$
$\frac{\left|A_{L}\right|^{2}}{\left|B_{L}\right|^{2}}=\frac{k^{2} \hbar^{4}}{m^{2} a^{2}}+1=\frac{2 \hbar^{2} E+m a^{2}}{m a^{2}} \quad\left[k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}\right]$
$R(E)=\frac{m a^{2}}{2 \hbar^{2} E+m a^{2}}=\left[\frac{2 \hbar^{2} E}{m a^{2}}+1\right]^{-1}$
decreasing to zero as E increases $T(E)=\frac{2 \hbar^{2} E}{2 \hbar^{2} E+m a^{2}}=\left[\frac{m a^{2}}{2 \hbar^{2} E}+1\right]^{-1}$.
increasing to one as E increases $R(E)+T(E)=1$

Note that: $\quad R(E)$ starts at 1 at $E=0$ and goes to 0 at $E \rightarrow \infty$
$T(E)$ starts at 0 and increases monotonically to 1 as E increases.
Note also that extending the equations for $R(E)$ and $T(E)$ to $E<0$, we see at
$\left\lvert\, E=-\frac{m a^{2}}{2 \hbar^{2}} \quad \quad R \rightarrow \infty\right.$ as E approaches $-m a^{2} / 2 \hbar^{2}$ from above and then
changes sign as E passes through $-m a^{2} / 2 \hbar^{2}$!

This is the energy of the bound state in the $\delta(\mathrm{x})$-function well

This tells you that something special happens when you "extend" the scattering calculation to scattering off a $\mathrm{V}(\mathrm{x})$ at the energy of a bound state. This is strange because it is difficult to imagine scattering at $\mathrm{E}<0$.

See CTDL Chapter 1 Problem \#3b (page 87) for a related problem

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

