### 5.73

## Quiz 27

| $\mathbf{T}_{ \pm 1}^{(1)}=\mp 2^{-1 / 2}(\mathbf{x} \pm i \mathbf{y}), \quad \mathbf{T}_{0}^{(1)}=\mathbf{z}$ |
| :--- |
| $\left[\mathbf{J}_{i}, \mathbf{q}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{q}_{k}$ |

A. Show that $\left[\mathbf{J}_{z}, \mathbf{T}_{-1}^{(1)}\right]=\hbar \mathbf{T}_{-1}^{(1)}$
B. Show that $\left[\mathbf{J}_{-}, \mathbf{T}_{-1}^{(1)}\right]=0$
C. If $\mathbf{T}_{\mu}^{(\omega)}$ satisifes the $\left[\mathbf{J}_{ \pm}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar[\omega(\omega+1)-\mu(\mu \pm 1)]^{1 / 2} \mathbf{T}_{\mu \pm 1}^{(\omega)}$ and $\left[\mathbf{J}_{z}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar \mu \mathbf{T}_{\mu}^{(\omega)}$ definitions, then we are supposed to know all selection rules for matrix elements of $\mathbf{T}_{\mu}^{(\omega)}$ in the $\left|J M_{j}\right\rangle$ basis set. What are the $\Delta \mathrm{J}$ and $\Delta \mathrm{M}_{\mathrm{J}}$ selection rules for $\mathbf{T}_{+2}^{(3)}$ ?

$$
\Delta \mathrm{J}=\quad \Delta \mathrm{M}_{\mathrm{J}}=
$$

(over)
D. Show that the operator $\left(\mathbf{L}_{+}\right)^{2}$ satisfies at least one part of the commutation rule definition for $\mathbf{T}_{+2}^{(2)}: \quad\left[\mathbf{J}_{\mathbf{z}}, \mathbf{T}_{2}^{(2)}\right]=\mathrm{h} 2 \mathbf{T}_{2}^{(2)}$.

MIT OpenCourseWare
https://ocw.mit.edu/

### 5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

