MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I

Fall, 2018

Professor Robert W. Field

Problem Set \#6

Reading: CTDL pp. 290-307, 1148-1155. [optional, 1169-1199]
Problems \#1 and \#2 are based on material not covered in the Lecture Notes \#17R on the Stellar site. The background for these problems is on pages 17-5, 17-6, and 17-7 of Lecture Notes \#17, also found on the Stellar site. I have renumbered the pages in Lecture 17(R) to $17(\mathrm{R})$-\# to avoid confusion.

Problems:

1. You are going to derive the " $\mathrm{x}-\mathrm{k}$ " relationships given on pages 17-5 and 17-6 in Lecture \#17 [not 17(R)]. You have worked out the relationships between m, k, a, and b in

$$
\mathbf{H}=\mathbf{p}^{2} / 2 m+\frac{1}{2} k \mathbf{x}^{2}+a \mathbf{x}^{3}+b \mathbf{x}^{4}
$$

and the "molecular constants" $Y_{00}, \omega_{\mathrm{e}}, \omega_{\mathrm{e}} x_{\mathrm{e}}$ in

$$
E_{n} / h c=Y_{00}+\omega_{e}(n+1 / 2)-\omega_{e} x_{e}(n+1 / 2)^{2},
$$

for a single-oscillator (diatomic) molecule. Now you are going to consider 3N-6 anharmonically coupled, anharmonic oscillators in an N -atom polyatomic molecule. The only thing that is different is that there are many more terms in $\mathbf{H}^{(1)}$ and the $E_{n}^{(2)}$ terms involve short $2^{\text {nd }}$-order perturbation theory summations over several combinations of oscillators. In all of your derivations ignore the $\left(\frac{\hbar}{m \omega}\right)^{1 / 2}$ factor that makes \mathbf{q} dimensionless.
A. $\quad \mathrm{x}_{\mathrm{ii}}$ appears in the energy level expression as

$$
E_{n_{1} n_{2} \ldots n_{3 N-6}}=\cdots x_{i i}\left(n_{i}+1 / 2\right)^{2} .
$$

The first term in the equation for x_{ii} on page 17-4 comes from one of the two strictly diagonal matrix elements of $\mathbf{H}^{(1)}$. These are the $\Delta n_{i}=0$ matrix elements of q_{i}^{4}. Derive this term.
B. The second term in x_{ii} comes from matrix elements of terms like $q_{i} q_{s}^{2}$. There are several classes of such matrix elements: $\left(\Delta \mathrm{n}_{\mathrm{i}}, \Delta \mathrm{n}_{\mathrm{s}}\right)=(1,0)$, $(-1,0),(1,2),(1,-2),(-1,2)$, and $(-1,-2)$. The first two have only $\pm \omega_{\mathrm{i}}$ in the denominator, while the other four have energy denominators of the form $\pm \omega_{\mathrm{i}} \pm 2 \omega_{\mathrm{s}}$. Sum these terms and derive the second term in the x_{ii} equation.
C. The first term in x_{ij} on page 17-6 comes from another strictly diagonal matrix element of $\mathbf{H}^{(1)}$

$$
E_{n_{1} n_{2} \ldots n_{3 N-6}}=\cdots x_{i j}\left(n_{i}+1 / 2\right)\left(n_{j}+1 / 2\right)
$$

which comes from diagonal $\left(\Delta \mathrm{n}_{\mathrm{i}}=0, \Delta \mathrm{n}_{\mathrm{j}}=0\right)$ matrix elements of $q_{i}^{2} q_{j}^{2}$. Derive this contribution to x_{ij}.
D. The second term in x_{ij} on page 17-6 comes from $\Delta \mathrm{n}_{\mathrm{i}}=0, \Delta \mathrm{n}_{\mathrm{j}}=0$ matrix elements of terms like $q_{i}^{2} q_{t}$ and $q_{j}^{2} q_{t}$. The selection rules for q_{t} is $\Delta \mathrm{n}_{\mathrm{t}}= \pm 1$ and the energy denominator will be $\pm \omega_{\mathrm{t}}$. Derive this term.
E. [OPTIONAL] The final term in x_{ij} comes from matrix elements of terms like $q_{i} q_{j} q_{t}$. There are eight such terms: $\left(\Delta \mathrm{n}_{\mathrm{i}}, \Delta \mathrm{n}_{\mathrm{j}}, \Delta \mathrm{n}_{\mathrm{t}}\right)=(1,1,1),(-1,1,1)$, $\ldots(-1,-1,-1)$ with corresponding energy denominators. Derive this term.
2. In addition to the $x-k$ relationships by which the vibrational anharmonicity constants, x_{ij}, are related to the cubic and quartic anharmonicity constants of the potential surface, perturbation theory can be used to derive the relationships of the rotational anharmonicity constants, $\alpha_{i}^{[A, B, o r C]}$ to the coefficients of the q_{i}^{3} cubic anharmonicity term in the potential, e.g.

$$
B_{n_{1}, n_{2}, \ldots, n_{3 N-6}}=B_{e}-\sum_{i=1}^{3 N-6} \alpha_{i}\left(n_{i}+1 / 2\right) .
$$

For a polyatomic molecule, you need to know the partial derivatives of the reciprocal moments of inertia with respect to each of the normal coordinate displacements, and that information comes from a normal coordinate analysis (\mathbf{F}
and \mathbf{G} matrices) that is beyond the scope of this class. Here, you will solve the simpler problem of $B_{n}=B_{e}-\alpha_{e}(n+1 / 2)$ for a diatomic molecule. The rotational "constant" operator is proportional to R^{-2},

$$
\begin{aligned}
\mathbf{x} & =R-R_{e} \\
R^{-2} & =R_{e}^{-2}\left[1-2\left(\frac{\mathbf{x}}{R_{e}}\right)+3\left(\frac{\mathbf{x}}{R_{e}}\right)^{2}+\ldots\right] \\
B_{v} & =B_{e}\left[1-2\left(\frac{\mathbf{x}}{R_{e}}\right)+3\left(\frac{\mathbf{x}}{R_{e}}\right)^{2}+\ldots\right] .
\end{aligned}
$$

So, by writing \mathbf{H} as $\mathbf{H}^{(0)}+\mathbf{H}^{(1)}$

$$
\begin{aligned}
\mathbf{H}^{(0)} / h c & =\frac{1}{2}\left(\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}\right) \frac{1}{2 \pi c}(k / \mu)^{1 / 2}+B_{e} J(J+1) \\
B_{e} & =\frac{h}{8 \pi^{2} c \mu R_{e}^{2}} \\
\mathbf{H}^{(1)} / h c & =(a / h c) \mathbf{x}^{3}-2 B_{e}\left(\mathbf{x} / R_{e}\right) J(J+1)
\end{aligned}
$$

and the second-order corrections to $\mathrm{E}_{\mathrm{n}, \mathrm{J}}$ will contain three terms

$$
\begin{aligned}
\frac{E_{n, J}^{(2)}}{h c} & =\left(\frac{a}{h c}\right)^{2} \sum_{n^{\prime}} \frac{\left.\left|\langle n J| \mathbf{x}^{3}\right| n^{\prime} J\right\rangle\left.\right|^{2}}{\left(E_{n, J}^{(0)}-E_{n^{\prime}, J}^{(0)}\right) / h c}+\frac{4 B_{e}^{2}}{R_{e}^{2}} J^{2}(J+1)^{2} \sum_{n^{\prime}} \frac{\left.|\langle n| \mathbf{x}| n^{\prime}\right\rangle\left.\right|^{2}}{\left(E_{n, J}^{(0)}-E_{n^{\prime}, J}^{(0)}\right) / h c} \\
& -\frac{2 a B_{e}}{h c R_{e}} J(J+1) \sum_{n^{\prime}} \frac{\langle n| \mathbf{x}\left|n^{\prime}\right\rangle\left\langle n^{\prime}\right| \mathbf{x}^{3}|n\rangle}{\left(E_{n, J}^{(0)}-E_{n^{\prime}, J}^{(0)}\right) / h c}
\end{aligned}
$$

where the first term is a contribution to $\omega_{e} \mathrm{x}_{\mathrm{e}}$, the second term gives the centrifugal distortion $\left(D_{e} \approx 4 B_{e}^{3} / \omega_{e}^{2}\right)$, and the third term is the one that will contain the desired $(n+1 / 2) J(J+1)$ dependence of the α_{e} term. Note that there is also a first order correction to the energy $E_{n, J}^{(1)} / h c=\frac{3 B_{e}}{R_{e}^{2}} J(J+1)\langle n, J| \mathrm{x}^{2}|n, J\rangle$. This gives the harmonic contribution to α_{e}, which is usually smaller and of opposite sign to the cubic term (when a<0). Derive the two contributions to α_{e} and express them in terms of $\mathrm{B}_{\mathrm{e}}, \omega_{\mathrm{e}}, \mu$, and fundamental constants (h, c, etc.).
3. CTDL, page 205, \#9.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

