Name

5.73

Quiz 6 ANSWERS

Harmonic Oscillator:

$$
\begin{array}{ll}
\mathrm{V}(\mathrm{x})=\mathrm{kx}^{2} / 2 & \\
E=T+V & \\
T=p^{2} / 2 m & \\
p_{E}(x)=[2 m(E-V(x))]^{1 / 2} & \text { classical mechanical momentum } \\
\mathrm{x}_{ \pm}(E)= \pm[2 E / k]^{1 / 2} & \text { turning points } \\
\omega=[\mathrm{k} / \mathrm{m}]^{1 / 2} &
\end{array}
$$

A. Draw a cartoon of the classical mechanical wavefunction, $\psi(x)$, where $\mathrm{P}(\mathrm{x})=|\psi(\mathrm{x})|^{2}$. Recall that the classical probability $\mathrm{P}(\mathrm{x}) \propto 1 / \mathrm{v}(\mathrm{x})$. Pay special attention to $\psi(x)$ at the two turning points, $x_{ \pm}(E)$, and at $x=0$.

(continued other side)
B. Convert your classical mechanical cartoon from part A to a qualitatively correct quantum mechanical cartoon for the $\mathrm{v}=4$ eigenstate. Use deBroglie's equation, $\lambda(x)=h / p(x)$, generalized to allow λ and p to be functions of x. How many nodes? Are the nodes closer together near $\mathrm{x}=0$ or near $\mathrm{x}=\mathrm{x}_{ \pm}(\mathrm{E})$?

$v=4: 4$ nodes, nodes closest together near $x=0$.
C. Make extremely crude approximations to estimate the fraction of time an oscillator at energy $\mathrm{E}_{\mathrm{n}}=(\mathrm{n}+1 / 2) \hbar \omega$ can be found between the two center-most nodes. The period of a harmonic oscillator is $\tau=\frac{2 \pi}{\omega}$, the node spacing is $\lambda=\frac{\mathrm{h}}{\mathrm{p}_{\mathrm{E}}}$, and the velocity is $\mathrm{p}_{\mathrm{E}}(0) / \mathrm{m}$.

$$
\begin{aligned}
& \lambda(0)=\frac{h}{p(0)} \\
& p(0)=\left[\frac{9}{2} \hbar \omega 2 m\right]^{1 / 2} \\
& T=\frac{1}{v}=\frac{2 \pi}{\omega} \\
& \delta t=\lambda(0) / v(0)=\frac{h / p(0)}{p(0) / m}=h m / p_{0}^{2}
\end{aligned}
$$

Fraction of time

$$
\begin{aligned}
\frac{\delta t}{T / 2} & =\frac{h m / p_{0}^{2}}{\pi / \omega}=\frac{h \omega m}{\pi p_{0}^{2}} \\
& =\frac{h \omega m}{\pi \frac{9}{2} \hbar \omega 2 m} \\
& =\frac{2}{9}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

