
 

 

 

 

 

 

   

   
 

 

5.73 Lecture #3 3 - 1 
Lecture #3: |ψ(x,t)|2: Motion, Position, Spreading, Gaussian Wavepacket 

Reading Chapter 1, CTDL, pages 9-39, 50-56, 60-85 

Last lecture: 

Infinite well 
and 

Delta-function well 

What are the key points? 
h2⎡ ⎤En = n2 ⎢

⎣
⎥
⎦8mL2En, �n for 

ψ n = (2 / L)1/2 sin(nπx)
0 L 

E = − 
ma2 

E, � for 
2!2 

1/2 
⎛ ma ⎞ − ma|x| !ψ = e⎝⎜ !2 ⎠⎟ 

Do E and � for delta function well behave as you expect? 

TODAY: Can we construct a �(x,t) for which |�|2 acts like a CM particle, but with 
correct QM characteristics? 

* stationary phase point and its motion 
* stationary phase approximation for evaluating an integral with 
wiggly integrand 

Motion requires Ψ(#, %) from TDSE! Motion is encoded in '(#), but we will need to 
actually observe motion (pages 3-4 thru 3-12). 
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5.73 Lecture #3 3 - 2 

Our goal is to use a well understood function that appears frequently in 
quantum mechanics, a normalized Gaussian, as a particle-like quantum 
mechanical state function, a "Gaussian Wavepacket." 

What we want is to know how the time-evolving center position, center 
amplitude, center velocity, and the width of this wavepacket are encoded in 
the mathematical expression. This will guide us in constructing particle-like 
states with chosen properties and in knowing how to recognize these 
properties in an unfamiliar state function. 

From a stationary Gaussian G(x; x0, ∆x) to a moving Gaussian 
wavepacket |�(x,t)|2 

1. G (x;x0 ,∆ x) = (2π)−1/2 (∆ x)−1e −(x−x0 )2 2(∆ x )2 You can show by evaluating the 
integral that G(x; x0, ∆x) is 

Normalized: 
∞ 

G (x;x0 ,∆ x)dx = 1 normalized to 1.∫−∞ 

2x ≡
∞ 

G(x;x ,∆ x)x2dx and a similar equation for ⟨x⟩.∫−∞ 0 

The width, Δx, the standard deviation of G(x), is the square root of the 
variance 1/2 

2 ⎤⎡ 2∆ x = x − x 
⎣⎢ ⎦⎥ 

Finally, we want a function that is normalized to 1 at t = 0 

2∞ 
1 = ∫−∞ 

Ψ(x,0) dx 

2
G (x;x0 ,∆ x) = Ψ(x,0)* 

Ψ(x,0) = Ψ(x,0) 
∞ 

normalized as Ψ(x,0) 
2 
dx = 1∫−∞ 

4(∆ x )2

Ψ(x,0) = (2π)−1/4 (∆ x)−1/2 −( x−x0 )
2 

e 

This is also a  Gaussian.  Ψ(x,0) is broader and not as tall as G(x;x0 ,∆ x) at x = x0. 
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5.73 Lecture #3 3 - 3 
2.  How do we get to the following complicated-looking textbook function? 

spreading and moving 
with minimum width 
at t = 0 

2⎡ ⎤⎛ ⎞!k022a 

" 

⎢ 
⎢ 
⎢ 
⎢
⎢⎣ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥⎦ 

x− t⎝⎜ ⎠⎟ m− 
4!2t2 

a4 +1/2 2⎛ 4!2t2 ⎞⎛ 2 ⎞ m$$$$$$$$$$$#2
Ψ(x,t) = 1+⎝⎜ ⎠⎟⎝⎜ ⎠⎟ e2 2 4πa"$$$$$$$$$$$$#m a 

time-dependent normalization and magnitude. Since probability is 
conserved, the normalization factor must be t-dependent because the 
denominator of the exponential factor is t-dependent. 

2 ⎛
⎝⎜ 

2
2 

⎞
⎠⎟ 

1/2 
−2x2 /a2

Ψ(x,0) = e 
πa 

at t = 0, by comparison to the normalized Gaussian 
1/2 1/2 

⎛ 2 ⎞ ⎛ 1 ⎞ 
= ⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟πa2 2π(∆ x)2 

we have ∆x(t = 0) = a/2. 

Now, for motion of the center of the wavepacket, x0(t), we expect that 
p0x0(t) = x0(0) + t p0 is momentum at t = 0 
m 

p0(0) !k0(t) v is velocity at t = 0, k is the 
0 0v0(0) = = 

m m wavenumber, k = p / ! at t = 0 

!k0(t)
x0(t) = x0 + t 

m 
∆ x(0) = a / 2. Width increases as ∣t∣ increases from t = 0. 

Wavepacket is moving and changing its width. Minimum width is at t = 0. 

Could shift the t at which minimum width occurs by replacing t by t′ = t + δ 
in the formula for �(x,t). 
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5.73 Lecture #3 3 - 4 

How do we know that the width of the wavepacket is t-dependent? If the value of Ψ 
at the t-dependent center is changing and Ψ(#, %) is normalized, then the 
wavepacket must be spreading or contracting. We will have to look at the t-
dependent Schrödinger equation to see how the momentum depends on x. 

NON-LECTURE 
The Fourier transform of a Gaussian is another Gaussian.  This means that if you 
have a wavepacket, |Ψ($, 0)|!, with a Gaussian shape, the momentum distribution 
of this wavepacket, |Φ(), 0)|! , will also be a Gaussian. This Gaussian distribution of 
the momentum will cause the time-dependent spatial shape of the wavepacket to 
be either stretching or compressing. If the wavepacket shape, |Ψ($, *)|!, expands as 
t advances, it compresses as t decreases until it reaches the minimum possible 
width and then re-expands. The widths, Δ$ and Δ), are reciprocally related and the 
minimum uncertainty wavepacket, at the t when Δ$Δ) reaches its minimum value, 
is of particular interest. It is at this instant that the quantum mechanical 
wavepacket maximally resembles a classical particle. 

How do we get from G(x; x0,∆x) to |Ψ(x,t)|2? 

Time Dependent Schrödinger Equation (TDSE) 
∂Ψ HΨ = i! 
∂t 

Time Independent Schrödinger Equation (TISE) 
HΨ = Eψ or Hψ = E ψ n n n 

Special very useful case: if H is independent of time and if we know the solutions to 
the TISE, hen it is trivial to go from {"!, $!} to Ψ((, )). 

Suppose we create an arbitrary state at ) = 0. It is always possible to express this 
arbitrary state as a linear combination of eigenstates of H, 

ψ(x) = ∑a
n 
ψ 

n 
n 

because the set of {"!} is “complete”. We can convert this "(%) to Ψ(%, )) very 
simply: 

!nΨ(x,t) = ∑cn ψ ne
− iE t 

n 
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5.73 Lecture #3 3 - 5 
Show that this satisfies the TDSE: 

∂Ψ − iE t /!ni! = i!∑ (−iE / !)cn ψ ne∂t n 

− iE t /!n= ∑ E c ψ e n n n 

− iE t /!nHΨ = H∑cn ψ ne same, so the TDSE is 
n satisfied 

− iE t /!n= ∑E c ψ e n n n 
n 

It is clear that Ψ(x,t) “moves”, but we still need help in understanding 
that motion. 

∞
Ψ*(x,t)(i) ∫−∞ 

Ψ(x,t)dx = 1 

no motion because all ∆n ≠ 0 integrals involving 
∞
ψ* ψ n′ dx = 0 by orthogonality.∫−∞ n 

(ii) Ψ*(x,t)Ψ(x,t) evolves in time if eigenstates that belong to 
at least two different En are included. 

For example, 

− iE1t /! − iE2t /!= c1ψ1e + c2ψ 2eΨ1,2 

2 2 2 2 2 * iE1t /! − iE2t /!= + + c1
*ψ1c2ψ 2e ec1 ψ1 c2 ψ 2 

* − iE1t /! iE2t /! 

Ψ1,2 

+c1ψ1c2
*ψ 2e e 

!ω12 ≡ ( E1 − E2 ) 
2 2 2 2 2 * iω12t= + + c1 c2ψ1

*ψ 2ec1 ψ1 c2 ψ 2 

* 

Ψ1,2 

− iω12t+c1c2
*ψ1ψ 2e 
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5.73 Lecture #3 3 - 6 

The first two terms are t-independent and the second two terms are t-
dependent and their sum is definitely a real number: 

* iω2t2Re(c1 c2ψ1
*ψ 2e ) . 

Now let us consider the particle in a constant potential. 

ikx − ikx eigenfunctions {ψ k = e , ψ− k = e } 

p2 "2k 2 

E|k| = + E0 = + E02m ! 2m 
arbitrary 

zero of 
energy 

E|k| − E0 ≡ ω k! 

−iωkt Aeikx + Be−ikx Ψ|k| (x,t) = e ⎡⎣ ⎤⎦ 
= Aei (kx−ωt ) + Be−i (kx+ωt ) 
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5.73 Lecture #3 3 - 7 

Stationary phase 
(could choose any constant instead of 0)kxφ 

−ωt = 0 xf is the constant phase point. 

ωt 
xφ 

= A-term 
k 
ωt 

xφ 
= − B-term 

k 
phase velocity 

dxφ = vφ 
= ±ω / k

dt 
ωt 

xφ 
(t) = xφ 

(0) ± 
k 
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Some arbitrarily chosen point on Ψ(x,t) moves at a velocity ω/k.

5.73 Lecture #3 3 - 8 
Some arbitrarily chosen constant phase point on Ψ(#, %) moves at a velocity '/). 

What about 
∞ 
Ψ(x,t)

2
dx ?∫−∞ 

±2ikx The t-dependent term integrates to zero due to 
∞ 

e dx = 0 .∫−∞ 

So there is no motion in |Ψ(x,t)|2, only a constant term and standing 
waves. 

But Ψ(x,t) encodes motion through p̂  and x̂ . For example: 

∞
Ψ* ! ∂ = Ψdxp̂ 

x ∫−∞ i ∂x 
! ∂ ! − iωkt ! 

Aeikx − Be− ikx Ψ(x,t) = e [ Aikeikx − Bike− ikx ] = ike− iωkt [ ]
i ∂x i i 

Now the whole thing: 

! ∂ − ikx + B* ikx ] Aeikx − Be− ikx 

i 
Ψ*(x,t) 

∂x 
Ψ = !k [ A* e e [ ] 

∞
Now integrate ∫−∞ 

dx 

±2ikx dx = 0e∫ 
2 ⎤⎦p = !k ⎡⎣ A 

2 
− B 

as expected! Motion, just like Classical Mechanics! 

To get motion, it is necessary that A ≠ B 
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  g(k) = |g(k)|eiα(k

5.73 Lecture #3 3 - 9 
Now for the payoff. 

Consider a superposition of eikx for many values of k: 

Ψ(x,0) = ∫ g(k)eikx dk 

We can experimentally produce any g(k) we want. 

Let g(k) be a Gaussian in k 

−(a2 /4)(k−k0 )2 

g(k) = e 

But 
∞ 

g(k)eikx dk is the Fourier Transform of a Gaussian in k.∫−∞ 

Fourier ∞⎡ f (x) = (2π)−1/2 ikx dk get rid of kTransform ∫ g(k)e⎢ −∞ and Inverse 
Fourier ⎢ 

g(k) = (2π)−1/2 ∞ 
f (x)eikx dx get rid of xTransform ⎢ ∫⎣ −∞ 

So let us build Ψ(x,0) as a superposition of eikx . We can write g(k) in 
amplitude, argument form: 

iα( k )e ) 

complex 
function 
of real variable 

g(k) = g(k) 

We want |g(k)| to be sharply peaked near k = k0, so use a Gaussian 

−( a2 /4)( k−k0 )
2 

g(k) = e 

center k = k0 
width ∆k = 21/2a 
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To find the value of x

so if we choose dα
dk k k0

= −x0 we have stationary phase in k near k0 and 

near x = x0.  This means that the g(k)
−∞

∞

∫ eikxdx integral accumulates near 

x = x .

5.73 Lecture #3 3 - 10 

dα 
power series expansionα(k) = α(k0 ) + (k − k0 )

!##" dk k=k0α0 

dα
i( k−k0 )−( a2 /4)( k−k0 )

2 iα0 e dkg(k) = e e 
⎡ dα ⎤

i ( k−k0 ) +kx ikx −( a2 /4)( k−k0 )
2 iα0 ⎣⎢ dk ⎦⎥ g(k)e = e e e!########" rapidly oscillating in x except

independent of x at a special region of x 

To find the value of x at which the phase is stationary, we wantat which the phase is stationary, we want 

d ⎡ ⎤(k − k0 ) dα + kx
⎦⎥ 
= 0

dk ⎣⎢ dk 
dα + x = 0
dk 

dαso if we choose we have stationary phase in k near= −x0=dk k=k0 ∞ idx dxk0 and near x = x0. This means that the ∫−∞ 
g(k)e  integral 

accumulates to its exact value near x = x0. 
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5.73 Lecture #3 3 - 11 

How does an integral over a rapidly oscillating integrand accumulate? 
It accumulates near the stationary phase point, x0. 

I(k) 
g k( 0) 

I(k)  0 

x = x0 + δx 

x = x0 0 

0 

x = x0 − δx 

g(k)  

• 

• 

• 

k0 k 

Integral accumulates near k = k0 but only when x ≈ x0. 
k

I(k) = f (x,k) dk. If you examine the integrand and can identify∫−∞ the stationary phase region, you can 
determine the value of the integral without 
actually evaluating the integral. 
Amaze your friends! 
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We can now ask how this Ψ(x,t) can be modified by any time-
independent V(x).

5.73 Lecture #3 3 - 12 

NON-LECTURE 
Joel Tellinghuisen, “Reflection and Interference Structure in Diatomic Franck-
Condon Factors,” J. Mol. Spectrosc. 103, 455-465 (1984).  The figures in this paper
show how an integral accumulates at a stationary phase point of the integrand. 
The stationary phase point, xsp, is the coordinate at which the vibrational 
wavefunctions for states 1 and 2 have the same classical momentum, 
pclassical=!2#(% − '((!")*#/%. The stationary phase point is located at the crossing of 
the V1 and V2 potential curves, V1(xsp)=V2(xsp). The semiclassical approximation for 
calculating vibrational overlap integrals is discussed on pages 278-285 of H. 
Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules. 

a −( a2 /4)( k−k0 )
2 − i( k−k0 ) x0 ikx dkΨ(x,0) = 

(2π 

1/2 

)3/4 ∫
∞ 

e e e 
−∞ !####" 

− k ( x−x0 ) ik0x0e!#####"e 
This is a �-function. 
It causes �(x,0) to be 
localized near x0. 

So we get |Ψ|2 localized at x0(t), k0, ∆x(t), ∆k if g(k) is Gaussian. 

∆x = 2–1/2a 
∆k = 21/2/a 
∆x∆k = 1 at t = 0 

We have constructed a Gaussian wavepacket, Ψ(x,t), from Ψ(x,0) with 
localization of x0(t), ∆x(t) minimum at t = 0, Gaussian in x, Gaussian in 
k. 

We can now ask how this Ψ(#, %) can be modified by features of any 
time-independent '(#). 
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