Lecture \#3: $|\psi(x, t)|^{2}:$ Motion, Position, Spreading, Gaussian Wavepacket

Reading Chapter 1, CTDL, pages 9-39, 50-56, 60-85

Infinite well
and

Delta-function well
What are the key points?

$$
E_{n}, \psi_{n} \text { for } \underbrace{}_{0} \begin{aligned}
& E_{n}=n^{2}\left[\frac{h^{2}}{8 m L^{2}}\right] \\
& \psi_{n}=(2 / L)^{1 / 2} \sin (n \pi x)
\end{aligned} \quad \begin{aligned}
& E=-\frac{m a^{2}}{2 \hbar^{2}} \\
& \psi=\left(\frac{m a}{\hbar^{2}}\right)^{1 / 2} e^{-m a \alpha x / / \hbar}
\end{aligned}
$$

Do E and ψ for delta function well behave as you expect?

TODAY: Can we construct a $\Psi(\mathrm{x}, \mathrm{t})$ for which $|\Psi|^{2}$ acts like a CM particle, but with correct QM characteristics?

* stationary phase point and its motion
* stationary phase approximation for evaluating an integral with wiggly integrand

Motion requires $\Psi(x, t)$ from TDSE! Motion is encoded in $\psi(x)$, but we will need to actually observe motion (pages 3-4 thru 3-12).

Our goal is to use a well understood function that appears frequently in quantum mechanics, a normalized Gaussian, as a particle-like quantum mechanical state function, a "Gaussian Wavepacket."

What we want is to know how the time-evolving center position, center amplitude, center velocity, and the width of this wavepacket are encoded in the mathematical expression. This will guide us in constructing particle-like states with chosen properties and in knowing how to recognize these properties in an unfamiliar state function.

From a stationary Gaussian $\mathrm{G}\left(x ; x_{0}, \Delta \mathrm{x}\right)$ to a moving Gaussian wavepacket $|\Psi(\mathbf{x}, \mathbf{t})|^{2}$

1. $\left.G\left(x ; x_{0}, \Delta x\right)=(2 \pi)^{-1 / 2}(\Delta x)^{-1} e^{-\left(x-x_{0}\right.}\right)^{2} / 2(\Delta x)^{2} \quad$ You can show by evaluating the integral that $G\left(x ; x_{0}, \Delta x\right)$ is
Normalized: $\int_{-\infty}^{\infty} G\left(x ; x_{0}, \Delta x\right) d x=1$ normalized to 1 .

$$
\left\langle x^{2}\right\rangle \equiv \int_{-\infty}^{\infty} G\left(x ; x_{0}, \Delta x\right) x^{2} d x \text { and a similar equation for }\langle x\rangle .
$$

The width, Δx, the standard deviation of $G(x)$, is the square root of the variance

$$
\Delta x=\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]^{1 / 2}
$$

Finally, we want a function that is normalized to 1 at $t=0$

$$
\begin{aligned}
& \qquad 1=\int_{-\infty}^{\infty}|\Psi(x, 0)|^{2} d x \\
& G\left(x ; x_{0}, \Delta x\right)=\Psi(x, 0)^{*} \Psi(x, 0)=|\Psi(x, 0)|^{2} \\
& \text { normalized as } \int_{-\infty}^{\infty}|\Psi(x, 0)|^{2} d x=1 \\
& \Psi(x, 0)=(2 \pi)^{-1 / 4}(\Delta x)^{-1 / 2} e^{\left.-\left(x-x_{0}\right)^{2} / 4 \Delta x\right)^{2}}
\end{aligned}
$$

This is also a Gaussian. $\Psi(\mathrm{x}, 0)$ is broader and not as tall as $G\left(x ; x_{0}, \Delta x\right)$ at $x=x_{0}$.
2. How do we get to the following complicated-looking textbook function?

$$
|\Psi(x, t)|^{2}=\left(\frac{2}{\pi a^{2}}\right)^{1 / 2}\left(1+\frac{4 \hbar^{2} t^{2}}{m^{2} a^{4}}\right) e^{\begin{array}{l}
\text { spreading and moving } \\
\text { with minimum width } \\
\text { at } t=0
\end{array}}
$$

time-dependent normalization and magnitude. Since probability is conserved, the normalization factor must be t-dependent because the denominator of the exponential factor is t -dependent.

$$
|\Psi(x, 0)|^{2}=\left(\frac{2}{\pi a^{2}}\right)^{1 / 2} e^{-2 x^{2} / a^{2}}
$$

at $t=0$, by comparison to the normalized Gaussian

$$
\left(\frac{2}{\pi a^{2}}\right)^{1 / 2}=\left(\frac{1}{2 \pi(\Delta x)^{2}}\right)^{1 / 2}
$$

we have $\Delta x(t=0)=\alpha / 2$.
Now, for motion of the center of the wavepacket, $x_{0}(t)$, we expect that

$$
\begin{aligned}
& x_{0}(t)=x_{0}(0)+\frac{p_{0}}{m} t \quad p_{0} \text { is momentum at } t=0 \\
& v_{0}(0)=\frac{p_{0}(0)}{m}=\frac{\hbar k_{0}(t)}{m} \quad \begin{array}{l}
v_{0} \text { is velocity at } t=0, k_{0} \text { is the } \\
\text { wavenumber, } k=p / \hbar \text { at } t=0
\end{array} \\
& x_{0}(t)=x_{0}+\frac{\hbar k_{0}(t)}{m} t
\end{aligned}
$$

$\Delta x(0)=a / 2$. Width increases as $|t|$ increases from $t=0$.
Wavepacket is moving and changing its width. Minimum width is at $t=0$.
Could shift the t at which minimum width occurs by replacing t by $t^{\prime}=t+\delta$ in the formula for $\Psi(x, t)$.

How do we know that the width of the wavepacket is t-dependent? If the value of Ψ at the t-dependent center is changing and $\Psi(x, t)$ is normalized, then the wavepacket must be spreading or contracting. We will have to look at the t dependent Schrödinger equation to see how the momentum depends on x.

NON-LECTURE

The Fourier transform of a Gaussian is another Gaussian. This means that if you have a wavepacket, $|\Psi(x, 0)|^{2}$, with a Gaussian shape, the momentum distribution of this wavepacket, $|\Phi(p, 0)|^{2}$, will also be a Gaussian. This Gaussian distribution of the momentum will cause the time-dependent spatial shape of the wavepacket to be either stretching or compressing. If the wavepacket shape, $|\Psi(x, t)|^{2}$, expands as t advances, it compresses as t decreases until it reaches the minimum possible width and then re-expands. The widths, Δx and Δp, are reciprocally related and the minimum uncertainty wavepacket, at the t when $\Delta x \Delta p$ reaches its minimum value, is of particular interest. It is at this instant that the quantum mechanical wavepacket maximally resembles a classical particle.

How do we get from $\mathrm{G}\left(x ; x_{0}, \Delta x\right)$ to $|\Psi(x, t)|^{2}$?

Time Dependent Schrödinger Equation (TDSE)

$$
\mathbf{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

Time Independent Schrödinger Equation (TISE)

$$
\mathbf{H} \Psi=E \psi \quad \text { or } \quad \mathbf{H} \psi_{n}=E_{n} \psi_{n}
$$

Special very useful case: if \mathbf{H} is independent of time and if we know the solutions to the TISE, hen it is trivial to go from $\left\{E_{n}, \psi_{n}\right\}$ to $\Psi(x, t)$.

Suppose we create an arbitrary state at $t=0$. It is always possible to express this arbitrary state as a linear combination of eigenstates of \mathbf{H},

$$
\psi(x)=\sum_{n} a_{n} \psi_{n}
$$

because the set of $\left\{\psi_{n}\right\}$ is "complete". We can convert this $\psi(x)$ to $\Psi(x, t)$ very simply:

$$
\Psi(x, t)=\sum c_{n} \psi_{n} e^{-i E_{n} t / \hbar}
$$

Show that this satisfies the TDSE:

$$
\left.\begin{array}{rl}
i \hbar \frac{\partial \Psi}{\partial t} & =i \hbar \sum_{n}(-i E / \hbar) c_{n} \psi_{n} e^{-i E_{n} t / \hbar} \\
& =\sum E_{n} c_{n} \psi_{n} e^{-i E_{n} t / \hbar} \longleftrightarrow \\
\mathbf{H \Psi} & =\mathbf{H} \sum_{n} c_{n} \psi_{n} e^{-i E_{n} t / \hbar} \\
& =\sum_{n} E_{n} c_{n} \psi_{n} e^{-i E_{n} t / \hbar}
\end{array}\right] \begin{aligned}
& \text { same, so the TDSE is } \\
& \text { satisfied }
\end{aligned}
$$

It is clear that $\Psi(x, t)$ "moves", but we still need help in understanding that motion.

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x=1 \tag{i}
\end{equation*}
$$

no motion because all $\Delta n \neq 0$ integrals involving
$\int_{-\infty}^{\infty} \psi_{n}^{*} \psi_{n} d x=0$ by orthogonality.
(ii) $\quad \Psi^{*}(x, t) \Psi(x, t)$ evolves in time if eigenstates that belong to at least two different E_{n} are included.

For example,

$$
\begin{aligned}
& \Psi_{1,2}=c_{1} \Psi_{1} e^{-i E_{1} / \hbar}+c_{2} \boldsymbol{\psi}_{2} e^{-i E_{2} / t h} \\
& \left|\Psi_{1,2}\right|^{2}=\left|c_{1}\right|^{2}\left|\psi_{1}\right|^{2}+\left|c_{2}\right|^{2}\left|\psi_{2}\right|^{2}+c_{1}^{*} \psi_{1}^{*} c_{2} \psi_{2} e^{i E_{1} / h} e^{-i E_{2} t / h} \\
& +c_{1} \Psi_{1} c_{2}^{*} \psi_{2}^{*} e^{-i E_{1} / t h} e^{i E_{2} / t h} \\
& \omega_{12} \equiv\left(E_{1}-E_{2}\right) / \hbar \\
& \left|\Psi_{1,2}\right|^{2}=\left|c_{1}\right|^{2}\left|\psi_{1}\right|^{2}+\left|c_{2}\right|^{2}\left|\psi_{2}\right|^{2}+c_{1}^{*} c_{2} \psi_{1}{ }_{1}^{*} \psi_{2} e^{i \omega_{0_{1}} t} \\
& +c_{1} c_{2}^{*} \psi_{1} \psi_{2} \psi^{*} e^{-i \omega_{1} t_{2}}
\end{aligned}
$$

The first two terms are t-independent and the second two terms are t dependent and their sum is definitely a real number:

$$
2 \operatorname{Re}\left(c_{1}^{*} c_{2} \psi_{1}^{*} \psi_{2} e^{i 0_{2} t}\right) .
$$

Now let us consider the particle in a constant potential.

$$
\begin{aligned}
& \text { eigenfunctions }\left\{\psi_{k}=e^{i k x}, \psi_{-k}=e^{-i k x}\right\} \\
& E_{|k|}=\frac{p^{2}}{2 m}+\underbrace{E_{0}}_{\begin{array}{c}
\text { arbitrary } \\
\text { zero of } \\
\text { energy }
\end{array}}=\frac{\hbar^{2} k^{2}}{2 m}+E_{0} \\
& \frac{E_{|k|}-E_{0}}{\hbar} \equiv \omega_{k} \\
& \Psi_{|k|}(x, t)=e^{-i \omega_{k} t}\left[A e^{i k x}+B e^{-i k x}\right] \\
& =A e^{i(k x-\omega t)}+B e^{-i(k x+\omega t)}
\end{aligned}
$$

Stationary phase

$$
\begin{array}{ll}
k x_{\phi}-\omega t=0 & \begin{array}{l}
\text { (could choose any constant instead of } 0 \text {) } \\
x_{\phi} \text { is the constant phase point. }
\end{array} \\
x_{\phi}=\frac{\omega t}{k} & \text { A-term } \\
\mathrm{x}_{\phi}=-\frac{\omega t}{k} & \text { B-term }
\end{array}
$$

phase velocity

$$
\begin{aligned}
& \frac{d x_{\phi}}{d t}=v_{\phi}= \pm \omega / k \\
& x_{\phi}(t)=x_{\phi}(0) \pm \frac{\omega t}{k}
\end{aligned}
$$

5.73 Lecture \#3

Some arbitrarily chosen constant phase point on $\Psi(x, t)$ moves at a velocity ω / k.
What about $\int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x$?

The t-dependent term integrates to zero due to $\int_{-\infty}^{\infty} e^{ \pm 2 i k x} d x=0$.
So there is no motion in $|\Psi(x, t)|^{2}$, only a constant term and standing waves.

But $\Psi(x, t)$ encodes motion through $\langle\hat{p}\rangle$ and $\langle\hat{x}\rangle$. For example:

$$
\begin{gathered}
\left\langle\hat{p}_{x}\right\rangle=\int_{-\infty}^{\infty} \Psi^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \Psi d x \\
\frac{\hbar}{i} \frac{\partial}{\partial x} \Psi(x, t)=\frac{\hbar}{i} e^{-i \omega_{k} t}\left[A i k e^{i k x}-B i k e^{-i k x}\right]=\frac{\hbar}{i} i k e^{-i \omega_{k} t}\left[A e^{i k x}-B e^{-i k x}\right]
\end{gathered}
$$

Now the whole thing:

$$
\frac{\hbar}{i} \Psi^{*}(x, t) \frac{\partial}{\partial x} \Psi=\hbar k\left[A^{*} e^{-i k x}+B^{*} e^{i k x}\right]\left[A e^{i k x}-B e^{-i k x}\right]
$$

Now integrate $\int_{-\infty}^{\infty} d x$

$$
\begin{aligned}
& \int e^{ \pm 2 i k x} d x=0 \\
& \langle p\rangle=\hbar k\left[|A|^{2}-|B|^{2}\right]
\end{aligned}
$$

as expected! Motion, just like Classical Mechanics!
To get motion, it is necessary that $|A| \neq|B|$

5.73 Lecture \#3

Now for the payoff.
Consider a superposition of $e^{i k x}$ for many values of k :

$$
\Psi(x, 0)=\int g(k) e^{i k x} d k
$$

We can experimentally produce any $g(k)$ we want.

Let $\boldsymbol{g}(\boldsymbol{k})$ be a Gaussian in \boldsymbol{k}

$$
g(k)=e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}}
$$

But $\int_{-\infty}^{\infty} g(k) e^{i k x} d k$ is the Fourier Transform of a Gaussian in k.
$\begin{aligned} & \begin{array}{l}\text { Tourier } \\ \text { Transform } \\ \text { and Inverse }\end{array}\end{aligned} f(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} g(k) e^{i k x} d k \quad$ get rid of k
Fourier
Transform

$$
g(k)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} f(x) e^{i k x} d x
$$ get rid of x

So let us build $\Psi(x, 0)$ as a superposition of $e^{i k x}$. We can write $g(k)$ in amplitude, argument form:

$$
\begin{aligned}
& \left.g(k)=|g(k)| e^{i \alpha(k)}\right) \\
& \text { complex } \\
& \text { function } \\
& \text { of real variable }
\end{aligned}
$$

We want $|g(k)|$ to be sharply peaked near $k=k_{0}$, so use a Gaussian

$$
\begin{aligned}
& |g(k)|=e^{-\left(a^{2} / 4\left(k-k_{0}\right)^{2}\right.} \\
& \text { center } k=k_{0} \\
& \text { width } \Delta k=2^{1 / 2} a
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(k)=\underbrace{\alpha\left(k_{0}\right)}_{\alpha_{0}}+\left.\left(k-k_{0}\right) \frac{d \alpha}{d k}\right|_{k=k_{0}} \text { power series expansion } \\
& g(k)=e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}} e^{i \alpha_{0}} e^{i\left(k-k_{0}\right) \frac{d \alpha}{d k}} \\
& g(k) e^{i k x}=\underbrace{e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}} e^{i \alpha_{0}}}_{\text {independent of } x} e_{\begin{array}{l}
i\left[\left(k-k_{0}\right) \frac{d \alpha}{d k}+k x\right] \\
\text { rapidly a special regillating of } x
\end{array}}^{\left[\text {in except }^{\alpha(2)}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d k}\left[\left(k-k_{0}\right) \frac{d \alpha}{d k}+k x\right]=0 \\
& \frac{d \alpha}{d k}+x=0
\end{aligned}
$$

so if we choose $\left.\frac{d \alpha}{d k}\right|_{k=k_{0}}=-x_{0}$ we have stationary phase in k near k_{0} and near $x=x_{0}$. This means that the $\int_{-\infty}^{\infty} g(k) e^{i d x} d x$ integral accumulates to its exact value near $x=x_{0}$.

How does an integral over a rapidly oscillating integrand accumulate? It accumulates near the stationary phase point, x_{0}.

Integral accumulates near $k=k_{0}$ but only when $x \approx x_{0}$.
$I(k)=\int_{-\infty}^{k} f(x, k) d k . \quad$ If you examine the integrand and can identify the stationary phase region, you can determine the value of the integral without actually evaluating the integral. Amaze your friends!

NON-LECTURE

Joel Tellinghuisen, "Reflection and Interference Structure in Diatomic FranckCondon Factors," J. Mol. Spectrosc. 103, 455-465 (1984). The figures in this paper show how an integral accumulates at a stationary phase point of the integrand. The stationary phase point, $\mathrm{x}_{\text {sp }}$, is the coordinate at which the vibrational wavefunctions for states 1 and 2 have the same classical momentum, pclassical $=\left[2 m\left(E-V\left(x_{s p}\right)\right]^{1 / 2}\right.$. The stationary phase point is located at the crossing of the V_{1} and V_{2} potential curves, $\mathrm{V}_{1}(\mathrm{xsp})=\mathrm{V}_{2}(\mathrm{xsp})$. The semiclassical approximation for calculating vibrational overlap integrals is discussed on pages 278-285 of H . Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules.

$$
\Psi(x, 0)=\frac{a^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}} \underbrace{e^{-i\left(k-k_{0}\right) x_{0}} e^{i k x}}_{\substack{\text { U } \\ \text { This is a } \alpha \text {.function. } \\ \text { It causes } \Psi(x, 0) \text { to be } \\ \text { localized near } x_{0} \text {. }}} e^{i k x} d k
$$

So we get $|\Psi|^{2}$ localized at $x_{0}(t), k_{0}, \Delta \mathrm{x}(t), \Delta k$ if $g(k)$ is Gaussian.

$$
\begin{aligned}
& \Delta x=2^{-1 / 2} a \\
& \Delta k=2^{1 / 2} / a \\
& \Delta x \Delta k=1 \text { at } t=0
\end{aligned}
$$

We have constructed a Gaussian wavepacket, $\Psi(x, t)$, from $\Psi(x, 0)$ with localization of $x_{0}(t), \Delta x(t)$ minimum at $t=0$, Gaussian in x, Gaussian in k.

We can now ask how this $\Psi(x, t)$ can be modified by features of any time-independent $V(x)$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

