
 

 

  

   

      

          

   
 

 
  

 
 

5.73 Lecture #24 24 - 1 

Last time: 
J Matrices 

DEFINITION OF AN ANGULARstarting with ⎡⎣Ji, J j ⎤⎦ = i! Σε ijk Jkk MOMENTUM ! 
J2 jm = !2 j j( +1) jm 

jm = !m jm Jz 
J± = J x ± iJ y 

jm = ! ⎡⎣ j j( +1) − m(m ±1)⎤⎦
1/2 jm ±1J± 

nonzero matrix elements and “Condon Shortley” phase choice 
J2 jm = !2 j j( +1)δ j j′ δm mj′m′ ′ 

jm = !mδ j j′ δm m′j′m′ Jz 

jm = ! ⎡⎣ j j( +1) − mm′⎤⎦
1/2 δ j j′ δm m′ ±1j′m′ J± 

(J2,J ,J ,J ,J ,J ) all stay within the same j quantum number 
z x y + − 

all matrix elements of J2,J ,J ,J are real and positive (only those of J are imaginary) 
z x ± y 

TODAY: 1. What do the matrices look like for ! = 0, !" , 1? 
2. many operators are expressed as an angular momentum times a 

constant: Zeeman and density matrix examples 
3. other operators involve things like &⃗ or products of two angular 

momenta 

Stark effect 

Wigner-Eckart Theorem 
* classify operators by commutation rule 
* matrix elements in convenient basis sets 
* transform between inconvenient and convenient 

basis sets. 
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5.73 Lecture #24 24 - 2 

[px ,p y ] = 0 

A student in 1999 suggested that he could find f(x,y) such that 

∂2 f ∂2 f
≠ Thus [p x ,py ] ≠ 0! 

∂x∂y ∂y∂x 

This is possible, but f(x,y) would have to have a form that excludes it as an 
acceptable ψ(x,y). Typically, such an f(x,y) would have to be discontinuous or 
have discontinuous first derivatives. For all well behaved V(x,y), ψ(x,y) will 
have continuous first derivatives. The f(x,y) used to prove a commutation rule 
must be acceptable as a quantum mechanical wavefunction, ψ(x,y). This is a 
good thing because (see Lecture #22, page 22-7 or the Angular Momentum 
Handout) 

e− iapx ! = x1 + ax1 

e − iapx ! generates a linear translation of +a in x direction. 

linear translations commute (but rotations do not) 

This is the basis for (or a consequence of ) ⎡⎣pi ,p j ⎤⎦ = 0 

⎡⎣Ji , J j ⎤⎦ = i!∑εijk Jk 
k 
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5.73 Lecture #24 24 - 3 
Nonlecture 

prepare (excite) 
evolve 
detect 

e.g. basis set 

E 
e–iHt/! 

D This is artificial because it assumes that 
all population is moved from state 0 and 
transferred to states 1 and 2.0 , 1 , 2 

⎛ 0 1 1 ⎛⎞ 1 ⎛⎞ 0 ⎞ The “excitation matrix”, E, 
creates equal amplitudes in 
two excited eigenstates: ⎜ 

⎜⎜⎝ 

⎜ 
⎜⎜⎝ 

⎟ 
⎟⎟⎠ 

⎟ 
⎟⎟⎠ 
= ⎜ 
⎜⎜⎝ 

⎟ 
⎟⎟⎠ 

excite: E 0 = 1 0 0 
1 0 0 

0 
0 

1 
1 2 

1 

E†ρ(0) = E 0 0 
0 

⎞ 
evolve: If we are in the eigenbasis of H 

⎛ ae − iEat /!⎛ ⎞a 
= 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟⎠ 

⎜ 
⎜⎜⎝ 

⎟ 
⎟⎟⎠ 

e − iHt /! be − iEbt /! 

ce − iEct /! 
b 
c 

(translation in time) 

⎡
⎣Te

− iT†HTt /!T†but if we are not in the eigenbasis of H, need ⎤
⎦ = U(t, 0) 

E†Te + iT†HTt /!T†ρ(t ) = Te − iT†HTt /!T†E 0 0 

= U(t, 0)ρ(0)U†(t, 0) ρ(0) in 
eigenbasis of H 

This can be confusing because it 
is not clear what basis ρ(0) is 
expressed in and what the 
appropriate U is for that basis 
set. 

detect: D the “detection matrix” 

D t = Trace(ρD) 
Building Blocks! 
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5.73 Lecture #24 24 - 4 
!Many QM operators have the form f ( J ) 

e.g. Zeeman effect HZeeman = −γB 
! 
⋅ 
!J (B 
! is magnetic field)

!Others have the form f (q) 
HStark ! ! !e.g. Stark effect = eε ⋅q (ε is electric field) 

⎡Others have the form of f ( J1,J2 )
⎢ 

HSO
⎣ e.g. spin - orbit = aL ⋅ S⎢ 

We are going to want to be able to write matrix representations of these classes of 
operators. We are going to discover in this lecture that all of these operators have 
matrix representations that may be expressed as linear combinations of angular 
momentum matrices. 

Let us begin by writing matrices for J2, Jz, Jx, Jy, J+, J– . 

1 (Jx + iJy )j = 0 only basis state is jm = 00 2
 1 × 1 matrix 

⎞⎛ 
J2 00 ⎜ 

⎜⎜⎝ 
= !2 0 ⎟ 

⎟⎟⎠ 

same for all components of J 

11 
22

and 1 
2
−

1 
2

j = 1/2 

⎞
⎠ 

⎛
⎝ 

2 × 2 matrices 

⎜ +1⎟ 
1
2 

1
2 

1
2 

1
2 

1
2 

1
2

J2 = !2 

3 ⎛ ⎞ 
J2(1/2) !2 1 0= 

4 ⎝⎜ 0 1 ⎠⎟ 

1 ⎛ ⎞
(1/2) 1 0J = ! 
z 2 ⎝⎜ 0 −1 ⎠⎟ 
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5.73 Lecture #24 24 - 5 
m = +1/2 

1
2 

1
2 

= 0
⎛ 10 ⎞ ⎛ 1

0 

⎞ ⎛ 
⎠⎟ 
= 
⎝⎜ 
0
0 

⎞ 
J+ 
(1/2) e.g. 

⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟00 

0
1 

⎞ ⎛ 
⎠⎟ 
= 
⎝⎜ 
1
0 

⎞ 
⎠⎟ 

(1/2) J+ 

1
2
− 1
2 

= !
1
2 

1
2 

⎛ 10 ⎞ ⎛⎛ ⎞0 1(1/2)J = ! ⎝⎜ ⎠⎟ ⎝⎜00⎜⎝ ⎟⎠+ 0 0 
m = –1/2 

⎛ ⎞(1/2) 0 0J− = ! 
⎝⎜ 1 0 ⎠⎟ 

1 1 ⎛ ⎞(1/2) 0 1Jx = (J+ + J− ) = 
2 
!

2 ⎝⎜ 1 0 ⎠⎟ 

1 i ⎛ ⎞ ! ⎛(1/2) 0 1Jy = (J+ − J− ) = − 
2 
! 

⎠⎟ 
= 

2i ⎝⎜ −1 0 2 ⎝⎜ 

2verify that J 2 = 2 + J y 2 + JzJ x 

!2 ⎛ ⎞ ⎛ ⎞ !2 ⎛ ⎞2 0 1 0 1 1 0Jx = 
⎠⎟ 
= 

4 ⎝⎜ 1 0 ⎠⎟ ⎝⎜ 1 0 4 ⎝⎜ 0 1 ⎠⎟ 

!2 ⎛ ⎞ ⎛ ⎞ !2 ⎛ ⎞2 0 −i 0 −i 1 0Jy = 
⎠⎟ 
= 

⎝⎜ ⎠⎟ ⎝⎜ ⎝⎜ ⎠⎟4 i 0 i 0 4 0 1 

0 
−i 

i 
0 

⎞ 
⎠⎟ 

2 3!2 ⎛
J(1/2)( ) = 

4 ⎝⎜ 
1 
0 

0 
1 

⎞ 
⎠⎟ 
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5.73 Lecture #24 24 - 6 

An amazing amount of insight gained from this complete set of 2 × 2 matrices 

⎛1 0⎞ CTDL, pages 417-454
I = 1. Pauli Matrices

⎝⎜0 1⎠⎟ 2. Diagonalization of 2 × 2 
3. Geometric interpretation of 2 × 2⎡ ⎛ 0 1⎞ (1/ 2) ρ  in terms of fictitious spin 1/2⎢σx = 

⎝⎜ ⎠⎟
→ Jx1 0 4. spin 1/2 ρ⎢ 

5. magnetic resonance⎢ ⎛ ⎞ )⎢σy = 
0 −i 

⎠⎟ 
→ J( 

y
1/ 2 What is [σx, σy] = ?

⎢ ⎝⎜ i 0 
⎢ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞0 1 0 −i i 0
⎢ ⎛ 1 0 ⎞ (1/2 ) ⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ 

= 
⎝⎜ ⎠⎟ ⎢σz = 

⎠⎟ 
→ J z 1 0 i 0 0 −i 

⎣ ⎝⎜ 0 −1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞0 −i 0 1 −i 0 
⎠⎟ 
= 

3 matrices with eigenvalues ±1 ⎝⎜ i 0 ⎠⎟ ⎝⎜ 1 0 ⎝⎜ 0 i ⎠⎟ 

⎛ i 0 ⎞(⎡⎣σx , σy ⎤⎦) = 2 
⎠⎟ 
= 2iσz⎝⎜ 0 −i 

Surprise? Why the 2? 

⎛ m11 m12 ⎞ m11 + m22 m11 − m22 m12 + m21 + i
m12 − m21arbitrary M = 

⎝⎜ ⎟ = I + σz + σx σym21 m22 ⎠ 2 2 2 2 

1 ! ! a0 = 
2 

Tr(M) Center of Gravity
M = a0I + a ⋅σ ! 1 a = 

2 
Tr(Mσ) M ↔ ρ 

scalar vector 
part of part of 

M M ax = 
1 
Tr(Mσx ) Information in 2 by ︎2 ρ is2 repackaged into a 3 

ay = 
1
2 
Tr(Mσy ) component vector. 

Visualization of dynamics!
1

az = Tr(Mσz )2 

This provides a basis for taking apart the dynamics of an arbitrary 2 × 2 ρ into 
dynamics of x, y, z fictitious spin-1/2 components. Beat the S = 1/2  Zeeman problem 
to death and use it as basis for understanding the dynamics in any 2 × 2 space. 
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5.73 Lecture #24 24 - 7 

We have done J = 0, J = ½, now we do J = 1. 

J = 1 A set of 3 × 3 matrices 

1 0 0 

11 = 0 

0 0 −1 

0 1 0 

For a 2 × 2 problem (e.g. J = 1/2), we need 4 independent 2 × 2 matrices (because 
there are 4 elements in a 2 × 2 matrix) in order to represent an arbitrary 2 × 2 
matrix. 

For the 3 × 3 problem, we need 9 independent 3 × 3 matrices: 
2 2 2(x,y,z, x ,y ,z , xy,xz,yz) (because there are 9 elements in a 3 × 3 matrix) 

[actually one scalar (I), three vector, five second-rank tensor] 
s + p + d = 9 

[for 2 × 2 it was s + p = 4]. 

Can you write out each of the J(3/2) matrices (16 4 × 4 matrices)? 

0 1 0 
0 0 1 

1 0 0 
0 0 0 

0 0 1 
0 0 0 

0 0 0 
1 0 0 
0 1 0 

0 1 0 
1 0 1 
0 1 0 

0 −i 0 
i 0 −i 
0 i 0 

J2(1) = 2!2 

(1) Jz = ! 

(1) = 21/2 !J+ 

(1) = 21/2 !J− 

(1) = 2−1/2 !Jx 

(1) = 2−1/2 !Jy 

⎞⎛ 
⎟ 
⎟⎟⎠ 

⎜ 
⎜⎜⎝ 

⎞⎛ 

An example: 

⎟ 
⎟⎟⎠ 

⎜ 
⎜⎜⎝ 

⎞ 
⎟ 
⎟
⎠ 

0
0
0 

⎛⎞ 
⎜ 
⎜
⎝ 

=⎟ 
⎟
⎠ 

1
0
0 

⎛ 
⎜
⎜
⎝ 

⎞ 
⎟
⎟
⎠ 

0
1
0 

1
0
0 

0
0
0 

⎛ 
⎜
⎜
⎝ 

⎞

⎠

⎟ 
⎟⎟ 

⎛ 
⎜ 
⎜⎜⎝ 

(1) J+ 
⎞⎛ 
⎟ 
⎟⎟⎠ 

⎜ 
⎜⎜⎝ 

⎞⎛ 
⎟ 
⎟⎟⎠ 

⎜ 
⎜⎜⎝ 

⎞⎛ 
⎟ 
⎟⎟⎠ 

⎜ 
⎜⎜⎝ 

Revised August 17, 2020 8:25 AM 
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5.73 Lecture #24 24 - 8 
Nine 3 × 3 basis matrices for J = 1 is not nearly as nice as the 4 basis matrices for the 
2 × 2 J = 1/2 problem. But this set of nine basis matrices turns out to be everything 
that is needed to “understand” and picture spin = 1 systems. 

similarly for j = 3/2, 2, etc. 

There are 2 lovely consequences of being able to take an arbitrary matrix and rewrite it as 
sum of J matrices. 

1. If M is the matrix of an operator – a term in the Hamiltonian – then it is clear that this 
operator may be re-expressed as a sum of operators, each of which behaves exactly like a 
(combination of) component(s) of J – evaluated in the ⎜jm〉 basis set. 

a1i Ji + b2ij Ji J j 

M( j ) = a0I + ∑ a1 j Ji J j + ∑ c3ijk Ji , J j , Jk Cartesian vs. spherical 
i , j i , j ,k tensor forms 

+… 
This is the basis for classification of operators into T(k) 

m (k-rank tensor, m-component) and the 
Wigner– Eckart Theorem for evaluation of matrix elements.  

2. especially for 2-level systems, if M = ! and "⃗ is defined from M as on page 24-6, 
then we have a vector picture that enables us too understand preparation, 
evolution, and detection steps: 

z z 

y y 
! 
a 

π/2 pulse 

evolution of vector, fictitious B-fields 

z 

y 

π pulse 
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5.73 Lecture #24 24 - 9 

Now let’s do some J = 1 examples 

Zeeman effect for an ℓ = 1 (p orbital) state 

! ! !L = q × p (up out of page) 
µ 
! 
L ∝ −q! × p! (down into page)
! ! ! ! 

q e- µ L ∝ −L µ L ≡ −γL 

fieldcurrent on a 
strengthcircular wire 

! !
classical energy E = B ⋅µ L = Bzk̂ ⋅ (−γL) = −γBzL z 

field exclusively along z 

⎛ 1 0 0 ⎞ 
⎜ 
⎜⎜⎝ 

⎟ 
⎟⎟⎠ 

for L =1 system: HZeeman = −γBz! 0 0 0 
0 0 −1 

case (1) Let Ψ(0) = LM L = 1 1 

⎛ ⎞ ⎛ ⎞1 1 0 0 
⎜ ⎟ ⎜ ⎟ρ = Ψ Ψ = 0 ( 1 0 0 ) = 0 0 0⎜ ⎟ ⎜ ⎟ 
⎝ 0 ⎠ ⎝ 0 0 0 ⎠ 

ELM L 
= E11 = Trace(ρH) 

⎡ ⎤⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ 
⎢ 
⎢ 
⎢⎣ 

⎥ 
⎥ 
⎥⎦ 

⎜ 
⎜⎜⎝ 

⎜ 
⎜⎜⎝ 

⎟ 
⎟⎟⎠ 

⎟ 
⎟⎟⎠ 

Tr 0 0 0 
0 0 0 

0 0 0 
0 0 −1 

= −!γBz 

= −!γBz 
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5.73 Lecture #24 24 - 10 

0 0 0 

0 1 0 

0 0 0 

⎛ ⎞ 
ρ = ⎜ 

⎜
⎝ 

⎟ 
⎟
⎠ 

= Trace (ρH)=0 What about? E10 

E1−1 = +γBz ! no motion of E 

case (2): Let Ψ( )0 = 2−1/2 ( 11 + 10 ) 
! + − i0t ! ⎤− iE11tΨ( )t = 2−1/2 ⎡ 11 e 10 e⎣ ⎦ 

! + !− iE11t + iE11tρ ( )t = 
1 ( 11 11 + 10 10 + 11 10 e 10 11 e )2 
⎛ − iω11t ⎞1 e 0 

1 ⎜ ⎟iω11tρ ( )t = ⎜ e 1 0 ⎟2 ⎜ ⎟0 0 0⎝ ⎠ 
zeroes at locations of coherence in ρ 

0 
0 

⎛ 1 0 ⎞ 
H(B || +z ) = −γBz !⎜ ⎜⎜⎝ 

0 0 ⎟ 
⎟⎟⎠0 0 −1 

1 

2 
γBzE ( )t = H = Trace(Hρ ) = − !( )1 no time evolution of E 

Looked at 2 cases: 

1. pure state 11 ,B || z E = −γBz ! 

2. mixed state  2-1/2 ( 11 + 10 ),B ⊥ z E = − 
2
1 γBz ! 

mixed state always gives time-independent 〈E〉 in H is time-independent 
NMR: oscillating Bx, By, cw Bz. Many wonderful things happen! 
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5.73 Lecture #24 24 - 11 

Stark Effect: Electric field 
! !

classical E ∝ ε ⋅(qe − − q ! p+ ) ≈ εz z 

so we will need matrix elements of x , y, z in jm  basis set. How? 

Based on ⎡⎣z,L j ⎤⎦ = −i!∑εzjk 
qk from Vector operator definition (Lecture #23)

k — later 

Other angular momenta 

1. ℓ  electron orbital angular momentum 
2. s  electron spin 
3. I  nuclear spin 

These separate angular momenta interact with each other 
spin-orbit: ζ (r )ℓ ⋅s 
Zeeman: -γBz (ℓ z + gs sz + gI Iz ) 
hyperfine: a I i s 

We use coupled and uncoupled basis sets: sm ↔ jℓsmjℓm
ℓ s 

to evaluate all matrix elements of these multiple-operator terms. 
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5.73 Lecture #24 24 - 12 

case (3): Ψ(0) = 2−1/2 ( )11 + 10 
!

but H is for B || x 

a one at the location of a coherence in ρ 

⎛ 0 1 0 ⎞ 
!2−1/2 H = −γ Bx 

⎜ 
⎜⎜⎝ 
1 0 1 
0 1 0 

⎟ 
⎟⎟⎠ 

Something subtle is intentionally wrong here. Can you find it? 

⎡ + iω11t − iω11t ⎤E(t ) = Tr(Hρ) = − 
1
2 
γB ! e + e + 0 x ⎣ ⎦ 

= −γBx !cosω11t 

E(t) = 

t 

Put in t for t-dependent basis set, which is not the eigenbasis set. 
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