5.73

Quiz 30 ANSWERS

1.

The six np spin orbitals, listed in standard order, are: $1 \alpha, 1 \beta, 0 \alpha, 0 \beta,-1 \alpha,-1 \beta$. The number $1,0,-1$ refers to m_{I}, and α, β refers to $m_{S}=1 / 2,-1 / 2$.

Matrix elements of a one-electron operator, $\mathbf{F}=\mathbf{f}(\mathrm{i})$, are
$\Delta s o=0\left\langle\left\|\mathrm{a}_{1} \mathrm{a}_{\mathrm{a}}| | \mathrm{F}\right\| \mathrm{a}_{1} \mathrm{a}_{\|} \|\right\rangle=\Sigma\left\langle\mathrm{a}_{1}\right| \mathbf{f}\left|\mathrm{a}_{i}\right\rangle$
$\Delta s o=0\langle |\left|\mathrm{a}_{1} \mathrm{~b}\right||\mathrm{F}|\left|\mathrm{a}_{1} \mathrm{a}_{2} \|\right\rangle=\left\langle\mathrm{b}_{i}\right| \mathbf{f}\left|\mathrm{a}_{2}\right\rangle$
$\langle\mathrm{p} 1| \ell_{+}|\mathrm{p} 0\rangle=\langle\mathrm{p} 0| \ell_{+}|\mathrm{p}-1\rangle=2^{n} ;\langle\alpha| \mathbf{s}_{+}|\beta\rangle=1$
A. $\quad \mathbf{F} \equiv \sum_{i}-\gamma B_{z}\left(\ell_{z i}+2 \mathbf{s}_{z i}\right) . \quad$ Evaluate $\langle\mathbf{F}\rangle$ for $\psi=\|1 \alpha 0 \beta\|$.

This operator operates sequentially on electrons \#1 and \#2.

$$
\begin{aligned}
& \left\langle\|1 \alpha 0 \beta\| \sum_{i=1}^{2}-\gamma B_{z}\left(\ell_{z i}+2 s_{z i}\right)\|1 \alpha 0 \beta\|\right\rangle \\
& \quad=-\gamma B_{z} \hbar[\underbrace{1+0}_{\ell_{z}}+\underbrace{2(1 / 2)+2(-1 / 2)}_{s_{z}}]=-\gamma B_{z} \hbar
\end{aligned}
$$

Recall $\ell_{z}|n p \lambda\rangle=\hbar \lambda|n p \lambda\rangle$.
B. $\quad \mathbf{F} \equiv \mathbf{J}_{+}=\sum_{i}\left(\ell_{+i}+\mathbf{s}_{+i}\right) . \quad$ Evaluate $\langle\||\alpha 0 \alpha|\| \mathbf{F}\||1 \alpha-1 \alpha|\|\rangle$.
[HINT: F is a sum, not a product, of two one-electron operators.]
There is an orbital mismatch in position \#2. This is where we must put our $1 \mathrm{e}^{-}$operator. This mismatch is "fixed" by ℓ_{+}and NOT by \mathbf{s}_{+}.
$\left\langle\left\|\left|\alpha 0 \alpha\left\|\sum_{i}\left(\ell_{+i}+\mathbf{s}_{+i}\right)\right\|\right| \alpha-1 \alpha\right\|\right\rangle=\langle 0 \alpha| \ell_{+}|-1 \alpha\rangle$

$$
=\hbar[1 \cdot 2-(-1) \cdot 0]^{1 / 2}=\sqrt{2} \hbar
$$

C. $\quad \mathbf{F}=\sum_{i} \ell_{i} \cdot \mathbf{s}_{i}=\sum_{i}\left[\ell_{{ }_{z i}} \mathbf{s}_{2 i}+\frac{1}{2}\left(\ell_{+i} \mathbf{s}_{-i}+\ell_{-i} \mathbf{s}_{+i}\right)\right]$.

Evaluate $\langle ||1 \alpha 0 \beta||\mathbf{F} \||1 \alpha-1 \alpha||\rangle$
The orbital mismatch is in position \#2. It is "fixed" by $1 / 2 \ell+\mathbf{s}_{-}$.
$\left\langle\|1 \alpha 0 \beta\| \sum_{i}\left[\ell_{z i} \mathbf{s}_{z i}+\frac{1}{2}\left(\ell_{+i} \mathbf{s}_{-i}+\ell_{-i} \mathbf{s}_{+i}\right)\right]\left\||\alpha-1 \alpha \|\rangle=\langle 0 \beta| \frac{1}{2} \ell_{+} \mathbf{s}_{-}|-1 \alpha\rangle\right.\right.$
$=\frac{1}{2} \hbar^{2}[1 \cdot 2-(-1) \cdot 0]^{1 / 2}$
$=2^{-1 / 2} \hbar^{2}$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

