5.73

Quiz 19 ANSWERS

1. $\quad|\psi\rangle=N[\alpha|1\rangle+\beta|2\rangle+\gamma|3\rangle]$

Express the 3×3 density matrix $\rho=|\psi\rangle\langle\psi|$ in terms of $\mathrm{N}, \alpha, \beta$, and γ.

$$
\rho=N^{2}\left(\begin{array}{ccc}
|\alpha|^{2} & \alpha \beta^{*} & \alpha \gamma^{*} \\
\beta \alpha^{*} & |\beta|^{2} & \beta \gamma^{*} \\
\gamma \alpha^{*} & \gamma \beta^{*} & |\gamma|^{2}
\end{array}\right)
$$

2.

$\boldsymbol{\rho}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

What is an example of a $|\psi\rangle$ that corresponds to this ρ ?
$\psi=|2\rangle$
3. $\rho=\left(\begin{array}{ll}1 / 2 & 1 / 4 \\ 1 / 4 & 1 / 2\end{array}\right)$

Is the system in a pure state? A coherent superposition state? Or a statistical mixture state? What does ρ^{2} tell you?

$$
\begin{aligned}
& \rho=\rho^{2} \text { for coherent superposition } \\
& \rho \neq \rho^{2} \text { for statistical mixture } \\
& \rho^{2}=\left(\begin{array}{cc}
5 / 16 & 3 / 8 \\
3 / 8 & 5 / 16
\end{array}\right) \neq \rho
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

