5.73 Quiz 29

1.

 $E_{n\ell} = -\Re/(n - \delta_{\ell})^2$ n is the principal quantum number and δ_{ℓ} is the quantum defect

A. Explain, based on the effective radial charge distribution of the ion-core, $Z^{\text{eff}}(r) [Z^{\text{eff}}(r) \text{ is } Z \text{ at } r = 0 \text{ and } 1 \text{ at } r = \infty]$, why the quantum defect, δ_{1} , is positive.

B. Predict, based on Z^{eff}(r) and the centrifugal term in the potential $\left[\ell(\ell+1)/2\mu r^2\right]$, whether δ_i is larger or smaller than δ_i . Explain.

C. If
$$\overline{E}_n = (E_{ns} + E_{np})/2$$
 and $\Delta = \delta_s - \delta_p$, derive $\Delta E_n = (E_{np} - E_{ns}) \approx \frac{2\Re\Delta}{n^3}$.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.