5.73

Quiz 26

$$
\begin{aligned}
& \mathbf{H}^{\text {so }}=\frac{\zeta}{\hbar} \mathbf{L} \cdot \mathbf{S}=\frac{1}{2} \frac{\zeta}{\hbar}\left[\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}\right] \\
& \mathbf{H}^{\text {zeeman }}=-\gamma B_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)
\end{aligned}
$$

Using ladders plus orthogonality, you should have obtained

$$
\left.\left.\left|{ }^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle=\left.\left(\frac{6}{7}\right)^{1 / 2}\right|^{2} F, M_{L}=2, M_{S}=1 / 2\right\rangle+\left.\left(\frac{1}{7}\right)^{1 / 2}\right|^{2} F, M_{L}=3, M_{S}=-1 / 2\right\rangle
$$

and

$$
\left.\left.\left.\left.\right|^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle=-\left.\left(\frac{1}{7}\right)^{1 / 2}\right|^{2} F, M_{L}=2, M_{S}=1 / 2\right\rangle+\left.\left(\frac{6}{7}\right)^{1 / 2}\right|^{2} F, M_{L}=3, M_{S}=-1 / 2\right\rangle .
$$

A. Compute $E^{S O}\left({ }^{2} F_{7 / 2}\right)=\left\langle{ }^{2} F_{7 / 2}, M_{J}=5 / 2\right| \mathbf{H}^{S O}\left|{ }^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle$.
B. Compute $E^{S O}\left({ }^{2} F_{5 / 2}\right)=\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right| \mathbf{H}^{S O}\left|{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle$.
C. Compute $\left.E^{Z}\left({ }^{2} F_{5 / 2}, 5 / 2\right)=\left.\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right| \mathbf{H}^{\text {Zeeman } \mid}\right|^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle$.
D. Compute the off-diagonal matrix element:

$$
\mathbf{H}_{5 / 25 / 2 ; 7 / 25 / 2}^{Z}=\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right| \mathbf{H}^{\text {Zeeman }}\left|{ }^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle .
$$

E. Use second order perturbation theory to derive the Zeeman tuning rate for the nominal ${ }^{2} \mathrm{~F}_{5 / 2}, \mathrm{M}_{\mathrm{J}}=5 / 2$ state. The Zeeman tuning rate is $\frac{d E}{d B_{Z}}$.

$$
E^{(0)}\left({ }^{2} F_{5 / 2}, M_{J}=5 / 2\right)=E^{S O}\left({ }^{2} F_{5 / 2}\right)+E^{Z}\left({ }^{2} F_{5 / 2}, 5 / 2\right)
$$

$$
E^{(2)}\left({ }^{2} F_{5 / 2}, M_{J}=5 / 2\right)=\frac{\left|\mathbf{H}_{5 / 25 / 2 ; 7 / 25 / 2}^{Z}\right|^{2}}{E^{S O}\left({ }^{2} F_{5 / 2}\right)-E^{S O}\left({ }^{2} F_{7 / 2}\right)}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

